Full text

Turn on search term navigation

© 2017 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Synchronized bursts (SBs) with complex structures are common in neuronal cultures. Although the phenomenon of SBs has been discovered for a long time, its origin is still unclear. Here, we investigate the properties of these SBs in cultures grown on a multi-electrode array. We find that structures of these SBs are related to the different developmental stages of the cultures and these structures can be modified by changing the magnesium concentration in the culture medium; indicating that synaptic mechanism is involved in the generation of SBs. A model based on short term synaptic plasticity (STSP), recurrent connections and astrocytic recycling of neurotransmitters has been developed successfully to understand the observed structures of SBs in experiments. A phase diagram obtained from this model shows that networks exhibiting SBs are in a complex oscillatory state due to large enough positive feedback provided by synaptic facilitation and recurrent connections. In this model, while STSP controls the fast oscillations (∼ 100 ms) within a SB, the astrocytic recycling determines the slow time scale (∼10 s) of inter-burst intervals. Our study suggests that glia-neuron interactions can be important in the understanding of the complex dynamics of neuronal networks.

Details

Title
Positive feedback and synchronized bursts in neuronal cultures
Author
Yu-Ting, Huang; Yu-Lin, Chang; Chun-Chung, Chen; Pik-Yin, Lai; Chan, C K
First page
e0187276
Section
Research Article
Publication year
2017
Publication date
Nov 2017
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1958644679
Copyright
© 2017 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.