It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Characterising the state of stress in the brittle upper-crust is essential in mechanics of faulting, industrial production processes, and operational earthquake forecasting. Nevertheless, unresolved questions concern the variation of pore-fluid with depth and the absolute strength on tectonically active faults. Here we show that, along the San Andreas fault system, the time-delay before the onset of the power-law aftershock decay rate (the c-value) varies by three orders of magnitude in the first 20 km below the surface. Despite the influence of the lithostatic stress, there is no continuous change in c-value with depth. Instead, two decay phases are separated by an abrupt increase at an intermediate depth range of 2–5 km. This transitional regime is the only one observed in fluid-injection-induced seismic areas. This provides strong evidence for the role of fluid and a porosity reduction mechanism at depth of few kilometres in active fault zones. Aftershock statistics can then be used to predict changes in differential shear stress with depth until the brittle-ductile transition is reached.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer