Content area
Full text
Received Jul 20, 2017; Revised Sep 14, 2017; Accepted Sep 27, 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
As the world’s most abundant renewable resource, lignocellulosic biomass has been acknowledged for potential use to produce chemicals and biomaterials. Lignocellulose is a low cost biomass that is abundantly available. Its main constituents are cellulose, hemicellulose, and lignin.
Cellulose is mainly used to produce paperboard and paper. Smaller quantities are converted into a wide variety of derivative products such as cellophane and rayon [1, 2]. Conversion of cellulose from energy crops into biofuels such as cellulosic ethanol is under investigation as an alternative fuel source [3–5]. Another growing application of cellulose is in composite materials as reinforcement in polymeric materials [6, 7].
Lignin, making up 10–25% of lignocellulosic biomass, depending on the kind of plant, is the second most abundant natural polymer [8]. The areas in which lignin is applicable include emulsifiers, dyes, synthetic floorings, sequestering, binding, thermosets, dispersal agents, paints, and fuels for treatments of roadways [9–12].
The main methods of the extraction of lignin and cellulose from different sources historically explored are hydrothermal, acidic, alkaline, wet oxidation, ammonia fiber explosion, organosolv, and, most recently, ionic liquid pretreatment methods (which were reviewed elsewhere) [13–15]. These extraction methods are expensive and energy intensive and utilize chemicals which require special disposal, handling, or production methods. In addition, materials for cellulose and lignin extraction are limited to straw of all kinds and timber for the limitation of technology. Extraction methods are only applied in laboratory, which seldom works in industrial production. How to break technology barrier is the key for...