It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In pot experiments carried out in 2005 and 2006, tolerance to sodium chloride salinity of 4 cultivars of perennial ryegrass (Lolium perenne) ('Nira', 'Stadion', 'Ronija', 'Darius') was studied. Three concentrations of NaCl in medium (earth + sand): 0.0 mM (control); 50 mM; 100 mM, were used in the investigations. In three successive crops of grass, fresh weight yield of leaves, stomatal conductance, photosynthesis intensity, content of chlorophyll and PS II maximum quantum yield (Fv/Fm) were determined. The obtained results showed that perennial ryegrass is a species tolerant to NaCl salinity. Among the studied cultivars, cv. 'Ronija' showed the highest tolerance, whereas cv. 'Nira' showed the lowest. The growth of perennial ryegrass plants under salinity conditions was limited by low stomatal conductance of leaves and photosynthesis, but not by the photosynthetic activity of chlorophyll and its contents.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer