It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Cancer cells have more mutations in their mitochondrial DNA (mtDNA) than do normal cells, and pathogenic mutations in the genes encoding mitochondrial NADH dehydrogenase (ND) subunits have been found to enhance the invasive and metastatic ability of various tumour cells in animal experiments. However, it is unknown whether single-nucleotide variants (SNVs) of the ND genes that decrease complex I activity are involved in distant metastasis in human clinical samples. Here, we demonstrated the enhancement of the distant metastasis of Lewis lung carcinoma cells by the ND6 13885insC mutation, which is accompanied by the overexpression of metastasis-related genes, metabolic reprogramming, the enhancement of tumour angiogenesis and the acquisition of resistance to stress-induced cell death. We then sequenced ND genes in primary tumour lesions with or without distant metastases as well as metastatic tumour lesions from 115 patients with non-small cell lung cancer (NSCLC) and colon cancer, and we subsequently selected 14 SNVs with the potential to decrease complex I activity. Intriguingly, a significant correlation was observed (P < 0.05 by Chi-square test) between the incidence of the selected mutations and distant metastasis. Thus, these results strongly suggest that pathogenic ND gene mutations participate in enhancing distant metastasis in human cancers.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuoh-ku, Chiba, Japan
2 Department of Life Science, Shimane University Faculty of Medicine, 89-1 Enya, Izumo, Shimane, Japan; Department of Biochemistry, Teikyo University School of Medicine, 2–11-1 Kaga, Itabashi-ku, Japan
3 University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
4 Department of Life Science, Shimane University Faculty of Medicine, 89-1 Enya, Izumo, Shimane, Japan