Full Text

Turn on search term navigation

© 2014, Varga et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Fast spiking, parvalbumin (PV) expressing hippocampal interneurons are classified into basket, axo-axonic (chandelier), and bistratified cells. These cell classes play key roles in regulating local circuit operations and rhythmogenesis by releasing GABA in precise temporal patterns onto distinct domains of principal cells. In this study, we show that each of the three major PV cell classes further splits into functionally distinct sub-classes during fast network events in vivo. During the slower (<10 Hz) theta oscillations, each cell class exhibited its own characteristic, relatively uniform firing behavior. However, during faster (>90 Hz) oscillations, within-class differences in PV interneuron discharges emerged, which segregated along specific features of dendritic structure or somatic location. Functional divergence of PV sub-classes during fast but not slow network oscillations effectively doubles the repertoire of spatio-temporal patterns of GABA release available for rapid circuit operations.

DOI: http://dx.doi.org/10.7554/eLife.04006.001

Details

Title
Functional fission of parvalbumin interneuron classes during fast network events
Author
Varga Csaba; Oijala Mikko; Lish, Jonathan; Szabo, Gergely G; Bezaire Marianne; Marchionni, Ivan; Golshani Peyman; Soltesz, Ivan
University/institution
U.S. National Institutes of Health/National Library of Medicine
Publication year
2014
Publication date
2014
Publisher
eLife Sciences Publications Ltd.
e-ISSN
2050084X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1966610751
Copyright
© 2014, Varga et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.