Abstract

Removal of internal transcribed spacer 2 (ITS2) from pre-ribosomal RNA is essential to make functional ribosomes. This complicated processing reaction begins with a single endonucleolytic cleavage followed by exonucleolytic trimming at both new cleavage sites to generate mature 5.8S and 25S rRNA. We reconstituted the 7S→5.8S processing branch within ITS2 using purified exosome and its nuclear cofactors. We find that both Rrp44’s ribonuclease activities are required for initial RNA shortening followed by hand over to the exonuclease Rrp6. During the in vitro reaction, ITS2-associated factors dissociate and the underlying ‘foot’ structure of the pre-60S particle is dismantled. 7S pre-rRNA processing is independent of 5S RNP rotation, but 26S→25S trimming is a precondition for subsequent 7S→5.8S processing. To complete the in vitro assay, we reconstituted the entire cycle of ITS2 removal with a total of 18 purified factors, catalysed by the integrated activities of the two participating RNA-processing machines, the Las1 complex and nuclear exosome.

Details

Title
Reconstitution of the complete pathway of ITS2 processing at the pre-ribosome
Author
Fromm, Lisa 1 ; Falk, Sebastian 2 ; Flemming, Dirk 1 ; Schuller, Jan Michael 2 ; Thoms, Matthias 1 ; Conti, Elena 2 ; Hurt, Ed 1   VIAFID ORCID Logo 

 Biochemie-Zentrum der Universität Heidelberg, Heidelberg, Germany 
 Max Planck Institute of Biochemistry, Martinsried, Germany 
Pages
1-11
Publication year
2017
Publication date
Nov 2017
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1968412785
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.