It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Understanding individuals’ voluntary vaccinating behaviors plays essential roles in making vaccination policies for many vaccinepreventable diseases. Usually, individuals decide whether to vaccinate through evaluating the relative cost of vaccination and infection according to their own interests. Mounting evidence shows that the best vaccine coverage level for the population as a whole can hardly be achieved due to the effects of herd immunity. In this paper, taking into consideration the herd immunity threshold, we present an evolutionary N-person threshold game, where individuals can dynamically adjust their vaccinating strategies and their payoffs depend nonlinearly on whether or not the herd immunity threshold is reached. First, in well-mixed populations, we analyze the relationships at equilibrium among the fraction of vaccinated individuals, the population size, the basic reproduction number and the relative cost of vaccination and infection. Then, we carry out simulations on four types of complex networks to explore the evolutionary dynamics of the N-person threshold game in structured populations. Specifically, we investigate the effects of disease severity and population structure on the vaccine coverage for different relative costs of vaccination and infection. The results and findings can offer new insight into designing incentive-based vaccination policies for disease intervention and control.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Cyberspace, Hangzhou Dianzi University, Hangzhou, China
2 School of Information Engineering, Nanjing University of Finance & Economics, Nanjing, China
3 Decision and Cognitive Sciences Research Centre, The University of Manchester, Manchester, UK
4 School of Cyberspace, Hangzhou Dianzi University, Hangzhou, China; School of Computer Science, National University of Defense Technology, Changsha, China; College of Computer Science and Electronic Engineering & National Supercomputer Centre in Changsha, Hunan University, Changsha, China