Full Text

Turn on search term navigation

© 2017 Airhart et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Objectives

The co-primary objectives of this study were to determine the human pharmacokinetics (PK) of oral NR and the effect of NR on whole blood nicotinamide adenine dinucleotide (NAD+) levels.

Background

Though mitochondrial dysfunction plays a critical role in the development and progression of heart failure, no mitochondria-targeted therapies have been translated into clinical practice. Recent murine studies have reported associations between imbalances in the NADH/NAD+ ratio with mitochondrial dysfunction in multiple tissues, including myocardium. Moreover, an NAD+ precursor, nicotinamide mononucleotide, improved cardiac function, while another NAD+ precursor, nicotinamide riboside (NR), improved mitochondrial function in muscle, liver and brown adipose. Thus, PK studies of NR in humans is critical for future clinical trials.

Methods

In this non-randomized, open-label PK study of 8 healthy volunteers, 250 mg NR was orally administered on Days 1 and 2, then uptitrated to peak dose of 1000 mg twice daily on Days 7 and 8. On the morning of Day 9, subjects completed a 24-hour PK study after receiving 1000 mg NR at t = 0. Whole-blood levels of NR, clinical blood chemistry, and NAD+ levels were analyzed.

Results

Oral NR was well tolerated with no adverse events. Significant increases comparing baseline to mean concentrations at steady state (Cave,ss) were observed for both NR (p = 0.03) and NAD+ (p = 0.001); the latter increased by 100%. Absolute changes from baseline to Day 9 in NR and NAD+ levels correlated highly (R2 = 0.72, p = 0.008).

Conclusions

Because NR increases circulating NAD+ in humans, NR may have potential as a therapy in patients with mitochondrial dysfunction due to genetic and/or acquired diseases.

Details

Title
An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers
Author
Airhart, Sophia E; Shireman, Laura M; Risler, Linda J; Anderson, Gail D; Nagana Gowda, G A; Raftery, Daniel; Tian, Rong; Shen, Danny D; Kevin D O’Brien
First page
e0186459
Section
Research Article
Publication year
2017
Publication date
Dec 2017
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1973447094
Copyright
© 2017 Airhart et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.