Abstract
Aim: To evaluate dose calculation accuracy of various algorithms in lung equivalent inhomogeneity comprising tumor within it and comparison with Gafchromic film data. Materials and Methods: Gafchromic film measured central axis absorbed dose in lung insert (-700 Hounsfield unit [HU]), in racemosa wood cylindrical inhomogeneity (-725 HU) and at three surfaces of tumor (-20 HU) created in cylindrical inhomogeneity, put in the cavity of computerized imaging reference systems (CIRS) thorax phantom were compared with convolution (CON), superposition (SP), fast SP (FSP), and X-ray voxel Monte Carlo (XVMC) algorithms calculated dose using 6 MV beams of field size 2 cm × 2 cm, 3 cm × 3 cm, 4 cm × 4 cm, 5 cm × 5 cm, and 8 cm × 8 cm. Results: XVMC was in good agreement with film measured results for all selected field sizes except 3 cm × 3 cm. SP under estimated by 5.7% at the center of the lung insert while deviation up to 6% was found at the cent of wood inhomogeneity in 2 cm × 2 cm. Except CON, increase in dose from proximal to the central surface of the tumor and then dose falloff from central to the distal surface for field size 2 cm × 2 cm to 4 cm × 4 cm was recorded. The change in film measured percentage depth dose from 2 cm × 2 cm to 3 cm × 3 cm field sizes was found -8% however for consecutive field size(s) larger than 3 cm × 3 cm this difference was less. CON and FSP produced overestimated results. Conclusion: Out of four algorithms, XVMC found consistent with measured data. The electronic disequilibrium within and at the interface of inhomogeneity make the accurate dose predictions difficult. These limitations results in deviations from the expected results of the treatments.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer