Full text

Turn on search term navigation

© 2014 Di Giminiani et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Objective

To investigate the acute residual hormonal and neuromuscular responses exhibited following a single session of mechanical vibration applied to the upper extremities among different acceleration loads.

Methods

Thirty male students were randomly assigned to a high vibration group (HVG), a low vibration group (LVG), or a control group (CG). A randomized double-blind, controlled-parallel study design was employed. The measurements and interventions were performed at the Laboratory of Biomechanics of the University of L'Aquila. The HVG and LVG participants were exposed to a series of 20 trials ×10 s of synchronous whole-body vibration (WBV) with a 10-s pause between each trial and a 4-min pause after the first 10 trials. The CG participants assumed an isometric push-up position without WBV. The outcome measures were growth hormone (GH), testosterone, maximal voluntary isometric contraction during bench-press, maximal voluntary isometric contraction during handgrip, and electromyography root-mean-square (EMGrms) muscle activity (pectoralis major [PM], triceps brachii [TB], anterior deltoid [DE], and flexor carpi radialis [FCR]).

Results

The GH increased significantly over time only in the HVG (P = 0.003). Additionally, the testosterone levels changed significantly over time in the LVG (P = 0.011) and the HVG (P = 0.001). MVC during bench press decreased significantly in the LVG (P = 0.001) and the HVG (P = 0.002). In the HVG, the EMGrms decreased significantly in the TB (P = 0.006) muscle. In the LVG, the EMGrms decreased significantly in the DE (P = 0.009) and FCR (P = 0.006) muscles.

Conclusion

Synchronous WBV acutely increased GH and testosterone serum concentrations and decreased the MVC and their respective maximal EMGrms activities, which indicated a possible central fatigue effect. Interestingly, only the GH response was dependent on the acceleration with respect to the subjects' responsiveness.

Details

Title
Hormonal and Neuromuscular Responses to Mechanical Vibration Applied to Upper Extremity Muscles
Author
Riccardo Di Giminiani; Fabiani, Leila; Baldini, Giuliano; Cardelli, Giovanni; Giovannelli, Aldo; Tihanyi, Jozsef
First page
e111521
Section
Research Article
Publication year
2014
Publication date
Nov 2014
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1979937396
Copyright
© 2014 Di Giminiani et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.