Full Text

Turn on search term navigation

© 2014 Du et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Objective

Elevated myocardial energy expenditure (MEE) is related with reduced left ventricular ejection fraction, and has also been documented as an independent predictor of cardiovascular mortality. However, the serum small-molecule metabolite profiles and pathophysiological mechanisms of elevated MEE in heart failure (HF) are still lacking. Herein, we used 1H-NMR-based metabolomics analysis to screen for potential biomarkers of MEE in HF.

Methods

A total of 61 subjects were enrolled, including 46 patients with heart failure and 15 age-matched controls. Venous serum samples were collected from subjects after an 8-hour fast. An INOVA 600 MHz nuclear magnetic resonance spectrometer with Carr-Purcell-Melboom-Gill (CPMG) pulse sequence was employed for the metabolomics analysis and MEE was calculated using colored Doppler echocardiography. Metabolomics data were processed using orthogonal signal correction and regression analysis was performed using the partial least squares method.

Results

The mean MEE levels of HF patients and controls were 139.61±58.18 cal/min and 61.09±23.54 cal/min, respectively. Serum metabolomics varied with MEE changed, and 3-hydroxybutyrate, acetone and succinate were significantly elevated with the increasing MEE. Importantly, these three metabolites were independent of administration of angiotensin converting enzyme inhibitor, β-receptor blockers, diuretics and statins (P>0.05).

Conclusions

These results suggested that in patients with heart failure, MEE elevation was associated with significant changes in serum metabolomics profiles, especially the concentration of 3-hydroxybutyrate, acetone and succinate. These compounds could be used as potential serum biomarkers to study myocardial energy mechanism in HF patients.

Details

Title
1H-NMR-Based Metabolic Analysis of Human Serum Reveals Novel Markers of Myocardial Energy Expenditure in Heart Failure Patients
Author
Du, Zhiyong; Shen, Anna; Huang, Yuli; Su, Liang; Lai, Wenyan; Wang, Peng; Xie, Zhibing; Xie, Zhiquan; Zeng, Qingchun; Ren, Hao; Xu, Dingli
First page
e88102
Section
Research Article
Publication year
2014
Publication date
Feb 2014
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1983418369
Copyright
© 2014 Du et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.