It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Tryptophan 7-halogenase catalyzes chlorination of free tryptophan to 7-chlorotryptophan, which is the first step in the antibiotic pyrrolnitrin biosynthesis. Many biologically and pharmaceutically active natural products contain chlorine and thus, an understanding of the mechanism of its introduction into organic molecules is important. Whilst enzyme-catalyzed chlorination is accomplished with ease, it remains a difficult task for the chemists. Therefore, utilizing enzymes in the synthesis of chlorinated organic compounds is important, and providing atomistic mechanistic insights about the reaction mechanism of tryptophan 7-halogenase is vital and timely. In this work, we examined a mechanism for the reaction of tryptophan chlorination, performed by tryptophan 7-halogenase, by calculating potential energy and free energy surfaces using two different Combined Quantum Mechanical/Molecular Mechanical (QM/MM) methods both employing Density Functional Theory (DFT) for the QM region. Both computational strategies agree on the nature of the rate-limiting step and provided close results for the reaction barriers of the two reaction steps. The calculations for both the potential energy and the free energy profiles showed very similar geometric features and hydrogen bonding interactions for the characterized stationary points.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Department of Chemistry, Michigan Technological University, Houghton, MI, USA; Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol, UK
2 Department of Chemical Engineering, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, Barcelona, Spain
3 Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol, UK
4 Pharmacy Department, Università di Parma, Parma, Italy