It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Toll-like receptors (TLR) are activated by endogenous alarmins such as fragmented extracellular matrix compounds found in the degenerating disc. TLRs regulate cytokine, neurotrophin, and protease expression in human disc cells in vitro, and thus control key factors in disc degeneration. However, whether TLR activation leads to degenerative changes in intact human discs is unclear. Nucleus pulposus (NP) cells isolated from non-degenerating discs increase IL-1β and nerve growth factor gene expression following treatment with Pam2CSK4 (TLR2/6 agonist) but not Pam3CSK4 (TLR1/2 agonist). Challenging NP cells with Pam2CSK4 or 30 kDa fibronectin fragments (FN-f, an endogenous TLR2 and TLR4 alarmin) increased secretion of proinflammatory cytokines. We then investigated the effect of TLR activation in intact, non-degenerate, ex vivo human discs. Discs were injected with PBS, Pam2CSK4 and FN-f, and cultured for 28 days. TLR activation increased proteoglycan and ECM protein release into the culture media and decreased proteoglycan content in the NP. Proteases, including MMP3, 13 and HTRA1, are secreted at higher levels following TLR activation. In addition, proinflammatory cytokine levels, including IL-6, TNFα and IFNγ, increased following TLR activation. These results indicate that TLR activation induces degeneration in human discs. Therefore, TLRs are potential disease-modifying therapeutic targets to slow disc degeneration.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Orthopaedic Research Lab, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada; McGill Scoliosis and Spine Group, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada
2 McGill Scoliosis and Spine Group, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada; Shriner’s Hospital for Children, Montreal, Canada
3 Orthopaedic Research Lab, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada; McGill Scoliosis and Spine Group, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada; Shriner’s Hospital for Children, Montreal, Canada