It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Spatial anisotropy generated spontaneously in the translationally invariant metallic phase, i.e. electron nematic effect, addresses a great challenge for both experimentalists and theoreticians. An interesting option for the realization of the electron nematic phase is provided by the system with orbital ordering, as long as both orbitally ordered states and electron nematic phases possess broken spatial symmetry. Here we report the detailed study of the angular dependences of the magnetoresistance in the orbitally ordered antiferroquadrupole (AFQ) phase of CeB6. Our data allowed revealing the electron nematic effect, which develops when magnetic field exceeds a critical value of 0.3–0.5T. As a result, new transition inside the AFQ phase corresponding to the change of the symmetry of magnetic scattering on spin fluctuations in CeB6 is discovered.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Prokhorov General Physics Institute of RAS, Moscow, Russia; National Research University Higher School of Economics, Moscow, Russia
2 Prokhorov General Physics Institute of RAS, Moscow, Russia
3 Institute for Problems of Materials Science of NASU, 3, Kiev, Ukraine
4 Prokhorov General Physics Institute of RAS, Moscow, Russia; Moscow Institute of Physics and Technology, 9 Institutsky lane, Dolgoprudny, Moscow, Russia