It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This study aimed to examine alterations in electroencephalography (EEG) phase synchronization in working memory processing in depressed patients. Sixty-four-channel EEG signals were recorded from 33 depressed patients and 32 healthy controls during a visual n-back task. Alterations in functional connections in the patients were investigated using event-related phase coherence in terms of the phase synchronization index (PSI). Compared with the control subjects, the depressed patients showed a lower task-dependent increase in the PSI of delta, theta, and alpha oscillations in a frontoparietal network, but a higher task-dependent increase in the PSI of beta oscillations in the frontoparietal network. Additionally, depressed patients showed a lower task-dependent decrease in the PSI of delta, theta, alpha, and beta oscillations in centro-parieto-occipital sites. Insufficient phase synchronization and desynchronization during working memory processing reflects impairments in cortical inhibition, memory, and attention efficiency in major depression, while the abnormal increase in phase synchronization in beta oscillations in the frontoparietal network may indicate a new cortical circuit concerned with the repair of impaired ability in attention, memory retention, and working memory central executive processing. These findings present a compensatory mechanism for impaired cognitive function in major depression, and advance our understanding of functional aspect of beta oscillations.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Laboratory of Neural Engineering, Shenzhen University, Shenzhen, China
2 Shenzhen Kangning Hospital, Shenzhen, China
3 Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong