It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Osteoporosis is a prevalent bone metabolic disease and peripheral blood monocytes represent a major systemic cell type for bone metabolism. To identify the key dysfunctional pathways in osteoporosis, we performed pathway analyses on microarray data of monocytes from subjects with extremely high/low hip bone mineral density. We first performed a traditional pathway analysis for which different pathways were treated as independent. However, genes overlap among pathways will lead to “crosstalk” phenomenon, which may lead to false positive/negative results. Therefore, we applied correction techniques including a novel approach that considers the correlation among genes to adjust the crosstalk effects in the analysis. In traditional analysis, 10 pathways were found to be significantly associated with BMD variation. After correction for crosstalk effects, three of them remained significant. Moreover, the MAPK signaling pathway, which has been shown to be important for osteoclastogenesis, became significant only after the correction for crosstalk effects. We also identified a new module mainly consisting of genes present in mitochondria to be significant. In summary, we describe a novel method to correct the crosstalk effect in pathway analysis and found five key independent pathways involved in BMD regulation, which may provide a better understanding of biological functional networks in osteoporosis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, USA; Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
2 Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, USA; Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, USA
3 Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, USA; Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA; Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, USA