It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Carbon nanotubes (CNTs) are promising products in industry and medicine, but there are several human health concerns since their fibrous structure resembles asbestos. The presence of transition metals, mainly iron, in the fibres seems also implicated in the pathogenetic mechanisms. To unravel the role of iron at mesothelial level, we compared the chemical changes induced in MeT-5A cells by the exposure to asbestos (crocidolite) or CNTs at different content of iron impurities (raw-SWCNTs, purified- and highly purified-SWCNTs). We applied synchrotron-based X-Ray Fluorescence (XRF) microscopy and soft X-ray imaging (absorption and phase contrast images) to monitor chemical and morphological changes of the exposed cells. In parallel, we performed a ferritin assay. X-ray microscopy imaging and XRF well localize the crocidolite fibres interacting with cells, as well as the damage-related morphological changes. Differently, CNTs presence could be only partially evinced by low energy XRF through carbon distribution and sometimes iron co-localisation. Compared to controls, the cells treated with raw-SWCNTs and crocidolite fibres showed a severe alteration of iron distribution and content, with concomitant stimulation of ferritin production. Interestingly, highly purified nanotubes did not altered iron metabolism. The data provide new insights for possible CNTs effects at mesothelial/pleural level in humans.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy
2 Department of Chemistry, University of Turin, Turin, Italy
3 Elettra - Sincrotrone Trieste, Basovizza, Trieste, Italy
4 Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
5 European Synchrotron Radiation Facility, Grenoble, Cedex 9, France
6 Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy