Content area
Full Text
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
SPH is a mesh-free, adaptive, Lagrangian particle method that can be used to obtain solutions to systems of partial differential equations. In contrast to the concept of discretization methods which discretize a continuum into a finite set of nodal points, SPH consolidates a set of discrete particles into a quasicontinuum, and each particle represents specific material volumes. Since there is no mesh to distort, the method can handle large deformations in a pure Lagrangian frame [1], hence presenting extraordinary power for easy treatment of void regions, material interfaces, and multifracturing in materials. The technique was initially formulated to solve astrophysical problems [2, 3] and has been widely adopted in fluid dynamics related areas [4–6]. Material strength can be considered in a fairly straight forward manner, and Libersky and Petschek [7] were the first to incorporate an elastic-perfectly plastic material strength model into the SPH framework and they applied it to the simulation of the impact of an iron rod with a rigid surface. In recent years, there has been a growing interest in applying SPH for modeling solid deformation problems in a broad range of applications. However, most of these studies were focused on the high velocity impact, blasting, and granular flow types of problems, such as the study of the deformation of a metal cylinder resulting from the normal impact against a rigid surface [8, 9], modeling of impact induced fractures in brittle solids [10, 11], and the simulation of broken-ice fields floating on the water surface and moving under the effect of wind forces [12]. Rather limited publications can be found to date with regard to the application...