Abstract

For a resonator-based nano-balance, the capability of capturing a nanoparticle is essential for it to measure the mass of the particle. In the present study, a clamped-clamped nanobeam from a Boron-Nitride and Carbon (BNC) nanotube acts as the nano-balance, and a fullerene, e.g., C60, is chosen as the particle, and the capturing capability is quantitatively estimated by the minimal escape velocity (MEV) of the fullerene from the nanobeam after collision. When centrally colliding with the nanobeam, the escape of fullerene depends on both incidence of fullerene and temperature of the system. When the colliding in the Boron-Nitride (BN) area of the beam surface, the nanoball escapes easier than that at the carbon area. The MEV of the nanoball is lower at higher temperature. As the nanoball sometimes slides for a few pica-seconds on the beam surface before being bounced out, the nanoball can escape only when the beam surface can provide the nanoball enough kinetic energy to overcome the van der Waals interaction between them. The capturing capability of the nano-balance can, thus, be improved by reducing the initial kinetic energy of the system.

Details

Title
Critical conditions for escape of a high-speed fullerene from a BNC nanobeam after collision
Author
Cai, Kun 1 ; Li-Kui, Yang 2 ; Jiao, Shi 2 ; Qing-Hua, Qin 3   VIAFID ORCID Logo 

 College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, China; Research School of Engineering, the Australian National University, ACT, Australia 
 College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, China 
 Research School of Engineering, the Australian National University, ACT, Australia 
Pages
1-14
Publication year
2018
Publication date
Jan 2018
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1988494018
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.