It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Wood debris on the ocean floor harbor flourishing communities, which include invertebrate taxa thriving in sulfide-rich habitats belonging to hydrothermal vent and methane seep deep-sea lineages. The formation of sulfidic niches from digested wood material produced by woodborers has been known for a long time, but the temporal dynamics and sulfide ranges encountered on wood falls remains unknown. Here, we show that wood falls are converted into sulfidic hotpots, before the colonization by xylophagaid bivalves. Less than a month after immersion at a depth of 520 m in oxygenated seawater the sulfide concentration increased to millimolar levels inside immersed logs. From in situ experiments combining high-frequency chemical and video monitoring, we document the rapid development of a microbial sulfur biofilm at the surface of wood. These findings highlight the fact that sulfide is initially produced from the labile components of wood and supports chemosynthesis as an early pathway of energy transfer to deep-sea wood colonists, as suggested by recent aquarium studies. The study furthermore reveals that woodborers promote sulfide-oxidation at the periphery of their burrows, thus, not only facilitating the development of sulfidic zones in the surrounding of degraded wood falls, but also governing sulfur-cycling within the wood matrix.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Sorbonne Universités, UPMC Univ. Paris 6, CNRS, Laboratoire d’Ecogéochimie des Environnements Benthiques, Observatoire Océanologique, Banyuls-sur-Mer, France; Université Laval, Département de Biologie, Québec, Canada
2 Sorbonne Universités, UPMC Univ. Paris 6, CNRS, Laboratoire d’Ecogéochimie des Environnements Benthiques, Observatoire Océanologique, Banyuls-sur-Mer, France
3 Sorbonne Universités, UPMC Univ. Paris 6, CNRS, Laboratoire d’Ecogéochimie des Environnements Benthiques, Observatoire Océanologique, Banyuls-sur-Mer, France; Laboratório de Hidroquímica-IO/FURG, Rio Grande, Brazil
4 Sorbonne Universités, UPMC Univ. Paris 6, Banyuls-sur-Mer, France