Abstract

Engineered nucleases in genome editing manifest diverse efficiencies at different targeted loci. There is therefore a constant need to evaluate the mutation rates at given loci. T7 endonuclease 1 (T7E1) and Surveyor mismatch cleavage assays are the most widely used methods, but they are labour and time consuming, especially when one must address multiple samples in parallel. Here, we report a surrogate system, called UDAR (Universal Donor As Reporter), to evaluate the efficiency of CRISPR/Cas9 in targeted mutagenesis. Based on the non-homologous end-joining (NHEJ)-mediated knock-in strategy, the UDAR-based assay allows us to rapidly evaluate the targeting efficiencies of sgRNAs. With one-step transfection and fluorescence-activated cell sorting (FACS) analysis, the UDAR assay can be completed on a large scale within three days. For detecting mutations generated by the CRISPR/Cas9 system, a significant positive correlation was observed between the results from the UDAR and T7E1 assays. Consistently, the UDAR assay could quantitatively assess bleomycin- or ICRF193-induced double-strand breaks (DSBs), which suggests that this novel strategy is broadly applicable to assessing the DSB-inducing capability of various agents. With the increasing impact of genome editing in biomedical studies, the UDAR method can significantly benefit the evaluation of targeted mutagenesis, especially for high-throughput purposes.

Details

Title
A surrogate reporter system for multiplexable evaluation of CRISPR/Cas9 in targeted mutagenesis
Author
Zhang, Hongmin 1 ; Zhou, Yuexin 2 ; Wang, Yinan 1 ; Zhao, Yige 2   VIAFID ORCID Logo  ; Qiu, Yeting 2 ; Zhang, Xinyi 2 ; Yue, Di 2 ; Zhou, Zhuo 2 ; Wei, Wensheng 2 

 Beijing Advanced Innovation Center for Genomics, Biodynamic Optical Imaging Center (BIOPIC), Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China 
 Beijing Advanced Innovation Center for Genomics, Biodynamic Optical Imaging Center (BIOPIC), Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China 
Pages
1-9
Publication year
2018
Publication date
Jan 2018
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1988938189
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.