Abstract

Photonic crystals (PCs) are built to control the propagation of light within their structure. These can be used for an assortment of applications where custom designed devices are of interest. Among them, one-dimensional PCs can be produced to achieve the reflection of specific and broad wavelength ranges. However, their design and fabrication are challenging due to the diversity of periodic arrangement and layer configuration that each different PC needs. In this study, we present a framework to design high reflecting PCs for any desired wavelength range. Our method combines three stochastic optimization algorithms (Random Search, Particle Swarm Optimization and Simulated Annealing) along with a reduced space-search methodology to obtain a custom and optimized PC configuration. The optimization procedure is evaluated through theoretical reflectance spectra calculated by using the Equispaced Thickness Method, which improves the simulations due to the consideration of incoherent light transmission. We prove the viability of our procedure by fabricating different reflecting PCs made of porous silicon and obtain good agreement between experiment and theory using a merit function. With this methodology, diverse reflecting PCs can be designed for any applications and fabricated with different materials.

Details

Title
Stochastic optimization of broadband reflecting photonic structures
Author
Estrada-Wiese, D 1 ; del Río-Chanona, E A 2 ; del Río, J A 3 

 Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca Morelos, Mexico 
 Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College, London, UK 
 Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco Morelos, Mexico 
Pages
1-9
Publication year
2018
Publication date
Jan 2018
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1989209679
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.