You may have access to the free features available through My Research. You can save searches, save documents, create alerts and more. Please log in through your library or institution to check if you have access.
You may have access to different export options including Google Drive and Microsoft OneDrive and citation management tools like RefWorks and EasyBib. Try logging in through your library or institution to get access to these tools.
REFERENCESBaker, H. G. (1972). Seed weight in relation to environmental conditions in California. Ecology, 53, 997–1010. https://doi.org/10.2307/1935413Böhning-Gaese, K., Caprano, T., vanEwijk, K., & Veith, M. (2006). Range size: Disentangling current traits and phylogenetic and biogeographic factors. The American Naturalist, 167, 555–567. https://doi.org/10.1086/501078Borhidi, A. (1995). Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian flora. Acta Botanica Hungarica, 39, 97–181.Brown, J. H., Stevens, G. C., & Kaufman, D. M. (1996). The geographic range: Size, shape, boundaries, and internal structure. Annual Review of Ecology and Systematics, 27, 597–623. https://doi.org/10.1146/annurev.ecolsys.27.1.597Carboni, M., Dengler, J., Mantilla-Contreras, J., Venn, S., & Török, P. (2015). Conservation value, management and restoration of Europe's seminatural open landscapes. Hacquetia, 14, 5–17. https://doi.org/10.1515/hacq-2015-0017Chapin, F. S., Autumn, K., & Pugnaire, F. (1993). Evolution of suites of traits in response to environmental stress. The American Naturalist, 142, 78–92. https://doi.org/10.1086/285524Csontos, P. (1998). The applicability of a seed ecological database (SEED) in botanical research. Seed Science Research, 8, 47–51. https://doi.org/10.1017/s0960258500003901Csontos, P., Tamás, J., & Balogh, L. (2003). Thousand-seed weight records of species from the flora of Hungary, I. Monocotyledonopsida. Studia Botanica Hungarica, 34, 121–126.Csontos, P., Tamás, J., & Balogh, L. (2007). Thousand-seed weight records of species from the flora of Hungary, II. Dicotyledonopsida. Studia Botanica Hungarica, 38, 179–189.Dengler, J., Janisová, M., Török, P., & Wellstein, C. (2014). Biodiversity of Palaearctic grasslands: A synthesis. Agriculture, Ecosystems & Environment, 182, 1–14. https://doi.org/10.1016/j.agee.2013.12.015Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., … Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529, 167–171. https://doi.org/10.1038/nature16489Diekmann, M. (2003). Species indicator values as an important tool in applied plant ecology - a review. Basic and Applied Ecology, 4, 493–506. https://doi.org/10.1078/1439-1791-00185Dostál, P., Fischer, M., & Prati, D. (2016). Phenotypic plasticity is a negative, though weak, predictor of the commonness of 105 grassland species. Global Ecology and Biogeography, 25, 464–474. https://doi.org/10.1111/geb.2016.25.issue-4Edwards, W., & Westoby, M. (1996). Reserve mass and dispersal investment in relation to geographic range of plant species: Phylogenetically independent contrasts. Journal of Biogeography, 23, 329–338. https://doi.org/10.1046/j.1365-2699.1996.00034.xEllenberg, H. (1983). Gefährdung wildlebender Pflanzenarten in der Bundesrepublik Deutschland. Versuch einer ökologischen Betrachtung. Forstarchiv, 54, 127–133.Ellenberg, H., Weber, H. E., Düll, R., Wirth, V., Werner, W., & Paulißen, D. (1992). Zeigerwerte von Pflanzen in Mittel-europa, 2nd ed. Scripta Geobotanica, 18, 1–258.Eriksson, O., & Jakobsson, A. (1998). Abundance, distribution and life histories of grassland plants: A comparative study of 81 species. Journal of Ecology, 86, 922–933. https://doi.org/10.1046/j.1365-2745.1998.00309.xFekete, G., Király, G., & Molnár, Z. (2016). Delineation of the Pannonian vegetation region. Community Ecology, 17, 114–127. https://doi.org/10.1556/168.2016.17.1.14Fenner, M., & Thompson, K. (2005). The ecology of seeds, 1st ed. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511614101Fiedler, P. L. (1987). Life history and population dynamics of rare and common mariposa lilies (Calochortus Pursch: Liliaceae). Journal of Ecology, 75, 977–995. https://doi.org/10.2307/2260308Fischer, M., & Wipf, S. (2002). Effect of low-intensity grazing on the species-rich vegetation of traditionally mown subalpine meadows. Biological Conservation, 104, 1–11. https://doi.org/10.1016/S0006-3207(01)00149-5Fridley, J. D., Vandermast, D. B., Kuppinger, D. M., Manthey, M., & Peet, R. K. (2007). Co-occurrence based assessment of habitat generalists and specialists: A new approach for the measurement of niche width. Journal of Ecology, 95, 707–722. https://doi.org/10.1111/jec.2007.95.issue-4Gaston, K. J. (1994). Measuring geographic range sizes. Ecography, 17, 198–205. https://doi.org/10.1111/eco.1994.17.issue-2Gaston, K. J., & Kunin, W. E. (1997). Rare–common differences: An overview. In W. E.Kunin, & K. J.Gaston (Eds.), The biology of rarity (pp. 12–29). London: Chapman and Hall. https://doi.org/10.1007/978-94-011-5874-9Geng, Y., Wang, Z., Liang, C., Fang, J., Baumann, F., Kühn, P., … He, J.-S. (2012). Effect of geographical range size on plant functional traits and the relationship between plant, soil and climate in Chinese grasslands. Global Ecology and Biogeography, 21, 416–427. https://doi.org/10.1111/geb.2012.21.issue-4Greene, D. F., & Johnson, E. A. (1993). Seed mass and dispersal capacity in wind-dispersed diaspores. Oikos, 67, 69–74. https://doi.org/10.2307/3545096Grubb, P. J., & Coomes, D. A. (2008). Seed mass and nutrient content in a nutrient-starved tropical rainforest in Venezuela. Seed Science Research, 7, 269–280. https://doi.org/10.1017/s0960258500003627Guo, Q., Brown, J. H., Valone, T. J., & Kachman, S. D. (2000). Constraints of seed size on plant distribution and abundance. Ecology, 81, 2149–2155. https://doi.org/10.1890/0012-9658(2000)081[2149:COSSOP]2.0.CO;2Guo, Q., Thompson, D. B., Valone, T. J., & Brown, J. H. (1995). The effects of vertebrate granivores and folivores on plant community structure in the Chihuahuan Desert. Oikos, 73, 251–259. https://doi.org/10.2307/3545915Habel, J. C., Dengler, J., Janišová, M., Török, P., Wellstein, C., & Wiezik, M. (2013). European grassland ecosystems: Threatened hotspots of biodiversity. Biodiversity and Conservation, 22, 2131–2138. https://doi.org/10.1007/s10531-013-0537-xHanspach, J., Kühn, I., Pyšek, P., Boos, E., & Klotz, S. (2008). Correlates of naturalization and occupancy of introduced ornamentals in Germany. Perspectives in Plant Ecology, Evolution and Systematics, 10, 241–250. https://doi.org/10.1016/j.ppees.2008.05.001Herben, T., Nováková, Z., Klimešová, J., & Hrouda, L. (2012). Species traits and plant performance: Functional trade-offs in a large set of species in a botanical garden. Journal of Ecology, 100, 1522–1533. https://doi.org/10.1111/jec.2012.100.issue-6Hobohm, C., & Bruchmann, I. (2009). Endemische Gefäßpflanzen und ihre Habitate in Europa: Plädoyer für den Schutz der Grasland-Ökosysteme. Berichte der Reinhold- Tüxen- Gesellschaft, 21, 142–161.Hodgson, J. G. (1986). Commonness and rarity in plants with special reference to the Sheffield flora. Part II: The relative importance of climate, soils and land use. Biological Conservation, 36, 253–274. https://doi.org/10.1016/0006-3207(86)90053-4Hodkinson, D. J., Askew, A. P., Thompson, K., Hodgson, J. G., Bakker, J. P., & Bekker, R. M. (1998). Ecological correlates of seed size in the British flora. Functional Ecology, 12, 762–766. https://doi.org/10.1046/j.1365-2435.1998.00256.xHorváth, F., Dobolyi, K., Morschhauser, T., Lőkös, L., Karas, L., & Szerdahelyi, T. (1995). Flóra adatbázis 1.2. Taxon-lista és attribútum állomány. Vácrátót: MTA ÖBKI. [Flora database 1.2, List of taxa and attributes.]Jacobson, B., & Peres-Neto, P. R. (2010). Quantifying and disentangling dispersal in metacommunities: How close we have come? How far is there to go?Landscape Ecology, 25, 495–507. https://doi.org/10.1007/s10980-009-9442-9Jacquemyn, H., Brys, R., Vandepitte, K., Honnay, O., Roldán-Ruiz, I., & Wiegand, T. (2007). A spatially explicit analysis of seedling recruitment in the terrestrial orchid Orchis purpurea. New Phytologist, 176, 448–459. https://doi.org/10.1111/nph.2007.176.issue-2Jersáková, J., & Malinová, T. (2007). Spatial aspects of seed dispersal and seedling recruitment in orchids. New Phytologist, 176, 237–241. https://doi.org/10.1111/j.1469-8137.2007.02223.xKelly, C. K., & Woodward, F. I. (1996). Ecological correlates of plant range size: Taxonomies and phylogenies in the study of plant commonness and rarity in Great Britain. Philosophical Transactions of the Royal Society B, 351, 1261–1269. https://doi.org/10.1098/rstb.1996.0109Király, G. (2009). Új magyar füvészkönyv. Magyarország hajtásos növényei. Jósvafő, Hungary: Aggteleki Nemzeti Park Igazgatóság.Kleyer, M., Bekker, R. M., Knevel, I. C., Bakker, J. P., Thompson, K., Sonnenschein, M., … Peco, B. (2008). The LEDA Traitbase: A database of life-history traits of Northwest European flora. Journal of Ecology, 96, 1266–1274. https://doi.org/10.1111/jec.2008.96.issue-6Köckemann, B., Buschmann, H., & Leuschner, C. (2009). The relationship between abundance, range size and niche breadth in Central European tree species. Journal of Biogeography, 36, 854–864. https://doi.org/10.1111/jbi.2009.36.issue-5Kolb, A., Barsch, F., & Diekmann, M. (2006). Determinants of local abundance and range size in forest vascular plants. Global Ecology and Biogeography, 15, 237–247. https://doi.org/10.1111/geb.2006.15.issue-3Koleček, J., Schleuning, M., Burfield, I. J., Báldi, A., Böhning-Gaese, K., Devictor, V., … Reif, J. (2014). Birds protected by national legislation show improved population trends in Eastern Europe. Biological Conservation, 172, 109–116. https://doi.org/10.1016/j.biocon.2014.02.029Kunin, W. E., & Gaston, K. J. (1993). The biology of rarity: Patterns, causes and consequences. Trends in Ecology and Evolution, 8, 298–301. https://doi.org/10.1016/0169-5347(93)90259-RKunin, W. E., & Gaston, K. J. (1997). The biology of rarity: Causes and consequences of rare–common differences. Berlin: Springer. https://doi.org/10.1007/978-94-011-5874-9Kunin, W. E., & Schmida, A. (1997). Plant reproductive traits as a function of local, regional, and global abundance. Conservation Biology, 11, 183–192. https://doi.org/10.1046/j.1523-1739.1997.95469.xLambdon, P. W. (2008). Why is habitat breadth correlated strongly with range size? Trends amongst the alien and native floras of Mediterranean islands. Journal of Biogeography, 35, 1095–1105. https://doi.org/10.1111/j.1365-2699.2008.01894.xLavergne, S., Garnier, E., & Debussche, M. (2003). Do rock endemic and widespread plant species differ under the leaf–height–seed plant ecology strategy scheme?Ecology Letters, 6, 398–404. https://doi.org/10.1046/j.1461-0248.2003.00456.xLavergne, S., Thompson, J. D., Garnier, E., & Debussche, M. (2004). The biology and ecology of narrow endemic and widespread plants: A comparative study of trait variation in 20 congeneric pairs. Oikos, 107, 505–518. https://doi.org/10.1111/oik.2004.107.issue-3Lee, W. G., & Fenner, M. (1989). Mineral nutrient allocation in seeds and shoots in twelve Chionochloa species in relation to soil fertility. Journal of Ecology, 77, 704–716. https://doi.org/10.2307/2260980Leishman, M. R. (2001). Does the seed size/number trade-off model determine plant community structure? An assessment of the model mechanisms and their generality. Oikos, 93, 294–302. https://doi.org/10.1034/j.1600-0706.2001.930212.xLester, S. E., Ruttenberg, B. I., Gaines, S. D., & Kinlan, B. P. (2007). The relationship between dispersal ability and geographic range size. Ecology Letters, 10, 745–758. https://doi.org/10.1111/ele.2007.10.issue-8Liu, K., Eastwood, R. J., Flynn, S., Turner, R. M., & Stuppy, W. H. (2008). Seed information database. (Release 7.1, May 2008) http://www.kew.org/data/sidLiu, X., Swenson, N. G., Wright, S. J., Zhang, L., Song, K., Du, Y., … Ma, K. (2012). Covariation in plant functional traits and soil fertility within two species-rich forests. PLoS ONE, 7, e34767. https://doi.org/10.1371/journal.pone.0034767Lloyd, K. M., Wilson, J. B., & Lee, W. G. (2003). Correlates of geographic range size in New Zealand Chinochloa (Poaceae) species. Journal of Biogeography, 30, 1751–1761. https://doi.org/10.1046/j.1365-2699.2003.00922.xLowry, E., & Lester, S. E. (2006). The biogeography of plant reproduction: Potential determinants of species’ range sizes. Journal of Biogeography, 33, 975–1982. https://doi.org/10.1111/j.1365-2699.2006.01562.xMcCulloch, C. E., & Searle, S. R. (2001). Generalized linear mixed models, 1st ed. Chichester, USA: John Wiley and Sons Ltd.Metcalfe, D. J., & Grubb, P. J. (1995). Seed mass and light requirements for regeneration in Southeast Asian rain forest. Canadian Journal of Botany, 73, 817–826. https://doi.org/10.1139/b95-090Milberg, P., & Lamont, B. B. (1997). Seed/cotyledon size and nutrient content play a major role in early performance of species on nutrient-poor soils. New Phytologist, 137, 665–672. https://doi.org/10.1046/j.1469-8137.1997.00870.xMilberg, P., Péret-Fernández, M. A., & Lamont, B. B. (1998). Seedling growth response to added nutrients depends on seed size in three woody genera. Journal of Ecology, 86, 624–632. https://doi.org/10.1046/j.1365-2745.1998.00283.xMoles, A. T., Ackerley, D. D., Webb, C. O., Tweddle, J. C., Dickie, J. B., Pittman, A. J., & Westoby, M. (2005). Factors that shape seed mass evolution. Proceedings of the National Academy of Sciences, 102, 10540–10544. https://doi.org/10.1073/pnas.0501473102Morin, X., & Chuine, I. (2006). Niche breadth, competitive strength and range size of tree species: A trade-off based framework to understand species distributions. Ecology Letters, 9, 185–195. https://doi.org/10.1111/j.1461-0248.2005.00864.xMurphy, H. T., VanDerWal, J., & Lovett-Doust, J. (2006). Distribution and abundance across the range in eastern North American trees. Global Ecology and Biogeography, 15, 63–71. https://doi.org/10.1111/geb.2006.15.issue-1Murray, B. R., Thrall, P. H., Gill, A. G., & Nicotra, A. B. (2002). How plant life-history and ecological traits relate to species rarity and commonness at varying spatial scales. Austral Ecology, 27, 291–310. https://doi.org/10.1046/j.1442-9993.2002.01181.xOakwood, M., Jurado, E., Leishman, M., & Westoby, M. (1993). Geographic ranges of plant species in relation to dispersal morphology, growth form and diaspore weight. Journal of Biogeography, 20, 563–572. https://doi.org/10.2307/2845727Ozinga, W. A., Bekker, R. M., Schaminée, J. H. J., & vanGroenendael, J. M. (2004). Dispersal potential in plant communities depends on environmental conditions. Journal of Ecology, 92, 767–777. https://doi.org/10.1111/jec.2004.92.issue-5Ozinga, W. A., Römermann, C., Bekker, R. M., Prinzing, A., Tamis, W. L. M., Schaminée, J. H. J., … vanGroenendael, J. M. (2009). Dispersal failure contributes to plant losses in NW Europe. Ecology Letters, 12, 66–74. https://doi.org/10.1111/ele.2008.12.issue-1Peat, H. J., & Fitter, A. H. (1994). Comparative analyses of ecological characteristics of British angiosperms. Biological Reviews, 69, 95–115. https://doi.org/10.1111/brv.1994.69.issue-1Pither, J. (2003). Climate tolerance and interspecific variation in geographic range size. Proceedings of the Royal Society London B, 270, 475–481. https://doi.org/10.1098/rspb.2002.2275Powney, G. D., Rapacciuolo, G., Preston, C. D., Purvis, A., & Roy, D. B. (2014). A phylogenetically informed trait-based analysis of range change in the vascular flora of Britain. Biodiversity and Conservation, 23, 171–185. https://doi.org/10.1007/s10531-013-0590-5Procheş, S., Wilson, J. R. U., Richardson, M. R., & Rejmánek, M. (2012). Native and naturalized range size in Pinus: Relative importance of biogeography, introduction effort and species traits. Global Ecology and Biogeography, 21, 513–523. https://doi.org/10.1111/geb.2012.21.issue-5Ricklefs, R. E., Guo, Q., & Qian, H. (2008). Growth form and distribution of introduced plants in their native and non-native ranges in Eastern Asia and North America. Diversity and Distributions, 14, 381–386. https://doi.org/10.1111/j.1472-4642.2007.00457.xRockwood, L. L. (1985). Seed weight as a function of life form, elevation and life zone in Neotropical forests. Biotropica, 17, 32–39. https://doi.org/10.2307/2388375Römermann, C., Tackenberg, O., Jackel, A., & Poschlod, P. (2008). Eutrophication and fragmentation are related to species’ rate of decline but not to species rarity: Results from a functional approach. Biodiversity and Conservation, 17, 591–604. https://doi.org/10.1007/s10531-007-9283-2Roukulainen, K., & Vormisto, J. (2000). The most widespread Amazonian palms tend to be tall and habitat generalist. Basic and Applied Ecology, 1, 97–108. https://doi.org/10.1078/1439-1791-00020Salisbury, E. J. (1942). The reproductive capacity of plants. London: Bell.Schermann, S. (1967). Magismeret I-II. Budapest: Akadémiai Kiadó.Slatyer, R. A., Hirst, M., & Sexton, J. P. (2013). Niche breadth predicts geographical range size: A general ecological pattern. Ecology Letters, 16, 1104–1114. https://doi.org/10.1111/ele.2013.16.issue-8Soons, M. B., Brochet, A., Kleyheeg, E., & Green, A. J. (2016b). Seed dispersal by dabbling ducks: An overlooked dispersal pathway for a broad spectrum of plant species. Journal of Ecology, 104, 443–445. https://doi.org/10.1111/1365-2745.12531Soons, M. B., deGroot, G. J., Ramirez, M. T. C., Fraaije, R. G. A., Verhoeven, J. T. A., & deJager, M. (2016a). Directed dispersal by an abiotic vector: Wetland plants disperse their seeds selectively to suitable sites along the hydrological gradient via water. Functional Ecology, 31, 499–508. https://doi.org/10.1111/1365-2435.12771Spitzer, K., & Lepš, J. (1988). Determinants of temporal variation in moth abundance. Oikos, 53, 31–36. https://doi.org/10.2307/3565659Spitzer, K., Novotny, B., Tonner, M., & Lepš, J. (1993). Habitat preferences, distribution and seasonality of the butterflies (Lepidoptera, Papilionoidea) in a montane tropical rain forest, Vietnam. Journal of Biogeography, 20, 109–121. https://doi.org/10.2307/2845744Stewart, J. D., Hogg, E. H., Hurdle, P. A., Stadt, K. J., Tollestrup, P., & Lieffers, V. J. (1998). Dispersal of white spruce seed in mature aspen stands. Canadian Journal of Botany, 72, 181–188. https://doi.org/10.1139/b97-179Tautenhahn, S., Heilmeier, H., Götzenberger, L., Klotz, S., Wirth, C., & Kuhn, I. (2008). On the biogeography of seed mass in Germany – Distribution patterns and environmental correlates. Ecography, 31, 457–468. https://doi.org/10.1111/eco.2008.31.issue-4Thomas, C. D. (1991). Habitat use and geographic ranges of butterflies from the wet lowlands of Costa Rica. Biological Conservation, 55, 269–281. https://doi.org/10.1016/0006-3207(91)90032-5Thompson, K., Band, S. R., & Hodgson, J. G. (1993). Seed size and shape predict persistence in the soil. Functional Ecology, 7, 236–241. https://doi.org/10.2307/2389893Thompson, K., & Ceriani, R. M. (2003). No relationship between range size and germination niche width in the UK herbaceous flora. Functional Ecology, 17, 335–339. https://doi.org/10.1046/j.1365-2435.2003.00734.xThompson, K., Gaston, K. J., & Band, S. R. (1999). Range size, dispersal and niche breadth in the herbaceous flora of central England. Journal of Ecology, 87, 150–155. https://doi.org/10.1046/j.1365-2745.1999.00334.xThompson, K., & Rabinowitz, D. (1989). Do big plants have big seeds?The American Naturalist, 133, 722–728. https://doi.org/10.1086/284947Thuiller, W., Lavorel, S., Midgley, G., Lavergne, S., & Rebelo, T. (2004). Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron taxa. Ecology, 85, 1688–1699. https://doi.org/10.1890/03-0148Tilman, D. (1994). Competition and biodiversity in spatially structured habitats. Ecology, 75, 2–16. https://doi.org/10.2307/1939377Tito de Morais, C., Ghazoul, J., Maycock, C. R., Bagchi, R., Burslem, D. F. R. P., Khoo, E., … Kettle, C. J. (2015). Understanding local patterns in genetic diversity in dipterocarps using a multi-site, multi-species approach: Implications for forest management and restoration. Forest Ecology and Management, 356, 153–165. https://doi.org/10.1016/j.foreco.2015.07.023Török, P., Miglécz, T., Valkó, O., Tóth, K., Kelemen, A., Albert, Á.-J., … Tóthmérész, B. (2013). New thousand-seed weight records of the Pannonian flora and their application in analysing social behaviour types. Acta Botanica Hungarica, 55, 429–472. https://doi.org/10.1556/ABot.55.2013.3-4.17Török, P., Tóth, E., Tóth, K., Valkó, O., Deák, B., Kelbert, B., … Tóthmérész, B. (2016). New measurements of thousand-seed weights of species in the Pannonian flora. Acta Botanica Hungarica, 58, 187–198. https://doi.org/10.1556/034.58.2016.1-2.10Tremlová, K., & Münzbergová, Z. (2007). Importance of species traits for species distribution in fragmented landscapes. Ecology, 88, 965–977. https://doi.org/10.1890/06-0924Van derVeken, S., Bellemare, J., Verheyen, K., & Hermy, M. (2007). Life-history traits are correlated to geographical distribution patterns of western European forest herb species. Journal of Biogeography, 34, 1723–1735. https://doi.org/10.1111/jbi.2007.34.issue-10Venable, D. L., & Brown, J. S. (1988). The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. The American Naturalist, 131, 360–384. https://doi.org/10.1086/284795Walck, J. R., Baskin, J. M., & Baskin, C. C. (2001). Why is Solidago shortii narrowly endemic and S. altissima geographically widespread? A comprehensive comparative study of biological traits. Journal of Biogeography, 28, 1221–1237. https://doi.org/10.1046/j.1365-2699.2001.00620.xWalker, K. J., & Preston, C. D. (2006). Ecological predictors of extinction risk in the flora of lowland England, UK. Biodiversity and Conservation, 15, 1913–1942. https://doi.org/10.1007/s10531-005-4313-4Webb, T. J., & Gaston, K. J. (2000). Geographic range size and evolutionary age in birds. Proceedings of the Royal Society London B, 267, 1843–1850. https://doi.org/10.1098/rspb.2000.1219Westermann, J. R., von derLippe, M., & Kowarik, I. (2011). Seed traits, landscape and environmental parameters as predictors of species occurrence in fragmented urban railway habitats. Basic and Applied Ecology, 12, 29–37. https://doi.org/10.1016/j.baae.2010.11.006Westoby, M., Jurado, E., & Leishman, M. (1992). Comparative evolutionary ecology of seed size. Trends in Ecology and Evolution, 7, 368–372. https://doi.org/10.1016/0169-5347(92)90006-W
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Longer documents can take a while to translate. Rather than keep you waiting, we have only translated the first few paragraphs. Click the button below if you want to translate the rest of the document.
We aimed to introduce and test the “seed mass–distribution range trade-off” hypothesis, that is, that range size is negatively related to seed mass due to the generally better dispersal ability of smaller seeds. Studying the effects of environmental factors on the seed mass and range size of species, we also aimed to identify habitats where species may be at risk and need extra conservation effort to avoid local extinctions. We collected data for seed mass, global range size, and indicators for environmental factors of the habitat for 1,600 species of the Pannonian Ecoregion (Central Europe) from the literature. We tested the relationship between species’ seed mass, range size, and indicator values for soil moisture, light intensity, and nutrient supply. We found that seed mass is negatively correlated with range size; thus, a seed mass–distribution range trade-off was validated based on the studied large species pool. We found increasing seed mass with decreasing light intensity and increasing nutrient availability, but decreasing seed mass with increasing soil moisture. Range size increased with increasing soil moisture and nutrient supply, but decreased with increasing light intensity. Our results supported the hypothesis that there is a trade-off between seed mass and distribution range. We found that species of habitats characterized by low soil moisture and nutrient values but high light intensity values have small range size. This emphasizes that species of dry, infertile habitats, such as dry grasslands, could be more vulnerable to habitat fragmentation or degradation than species of wet and fertile habitats. The remarkably high number of species and the use of global distribution range in our study support our understanding of global biogeographic processes and patterns that are essential in defining conservation priorities.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Longer documents can take a while to translate. Rather than keep you waiting, we have only translated the first few paragraphs. Click the button below if you want to translate the rest of the document.
Details
Title
Do large-seeded herbs have a small range size? The seed mass–distribution range trade-off hypothesis
Author
Sonkoly, Judit 1
; Deák, Balázs 2
; Valkó, Orsolya 2
; Molnár, Attila, V 3
; Tóthmérész, Béla 4
; Török, Péter 1
1 MTA-DE Lendület Functional and Restoration Ecology Research Group, Debrecen, Hungary; Department of Ecology, University of Debrecen, Debrecen, Hungary
2 MTA-DE Biodiversity and Ecosystem Services Research Group, Debrecen, Hungary
3 Department of Botany, University of Debrecen, Debrecen, Hungary
4 Department of Ecology, University of Debrecen, Debrecen, Hungary; MTA-DE Biodiversity and Ecosystem Services Research Group, Debrecen, Hungary