It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This study investigated global gene and protein expression in the small yellow follicle (SYF; 6–8 mm in diameter) tissues of chickens in response to acute heat stress. Twelve 30-week-old layer-type hens were divided into four groups: control hens were maintained at 25 °C while treatment hens were subjected to acute heat stress at 36 °C for 4 h without recovery, with 2-h recovery, and with 6-h recovery. SYFs were collected at each time point for mRNA and protein analyses. A total of 176 genes and 93 distinct proteins with differential expressions were identified, mainly associated with the molecular functions of catalytic activity and binding. The upregulated expression of heat shock proteins and peroxiredoxin family after acute heat stress is suggestive of responsive machineries to protect cells from apoptosis and oxidative insults. In conclusion, both the transcripts and proteins associated with apoptosis, stress response, and antioxidative defense were upregulated in the SYFs of layer-type hens to alleviate the detrimental effects by acute heat stress. However, the genomic regulations of specific cell type in response to acute heat stress of SYFs require further investigation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
2 Department of Medical Research, Proteomic Core Laboratory, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
3 Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan; Department of Medical Sciences, National Tsing Hua University, Hsinchu, Taiwan
4 Department of Animal Science, National Chung Hsing University, Taichung, Taiwan; Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan; Center for the Integrative and Evolutionary Galliformes Genomics, iEGG Center, National Chung Hsing University, Taichung, Taiwan
5 Department of Animal Science, National Chung Hsing University, Taichung, Taiwan; Department of Medical Research, Proteomic Core Laboratory, China Medical University Hospital, Taichung, Taiwan
6 Department of Animal Science, National Chung Hsing University, Taichung, Taiwan; Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan; Center for the Integrative and Evolutionary Galliformes Genomics, iEGG Center, National Chung Hsing University, Taichung, Taiwan; Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung, Taiwan