Full Text

Turn on search term navigation

© 2018 Saitoh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In vertebrates, the initial step in heme biosynthesis is the production of 5-aminolevulinic acid (ALA) by ALA synthase (ALAS). ALA formation is believed to be the rate-limiting step for cellular heme production. Recently, several cohort studies have demonstrated the potential of ALA as a treatment for individuals with prediabetes and type-2 diabetes mellitus. These studies imply that a mechanism exists by which ALA or heme can control glucose metabolism. The ALAS1 gene encodes a ubiquitously expressed isozyme. Mice heterozygous null for ALAS1 (A1+/-s) experience impaired glucose tolerance (IGT) and insulin resistance (IR) beyond 20-weeks of age (aged A1+/-s). IGT and IR were remedied in aged A1+/-s by the oral administration of ALA for 1 week. However, the positive effect of ALA proved to be reversible and was lost upon termination of ALA administration. In the skeletal muscle of aged A1+/-s an attenuation of mitochondrial function is observed, coinciding with IGT and IR. Oral administration of ALA for 1-week brought about only a partial improvement in mitochondrial activity however, a 6-week period of ALA treatment was sufficient to remedy mitochondrial function. Studies on differentiated C2C12 myocytes indicate that the impairment of glucose metabolism is a cell autonomous effect and that ALA deficiency ultimately leads to heme depletion. This sequela is evidenced by a reduction of glucose uptake in C2C12 cells following the knockdown of ALAS1 or the inhibition of heme biosynthesis by succinylacetone. Our data provide in vivo proof that ALA deficiency attenuates mitochondrial function, and causes IGT and IR in an age-dependent manner. The data reveals an unexpected metabolic link between heme and glucose that is relevant to the pathogenesis of IGT/IR.

Details

Title
5-aminolevulinic acid (ALA) deficiency causes impaired glucose tolerance and insulin resistance coincident with an attenuation of mitochondrial function in aged mice
Author
Saitoh, Shinichi; Okano, Satoshi; Nohara, Hidekazu; Nakano, Hiroshi; Shirasawa, Nobuyuki; Naito, Akira; Yamamoto, Masayuki; Kelly, Vincent P; Takahashi, Kiwamu; Tanaka, Tohru; Nakajima, Motowo; Nakajima, Osamu
First page
e0189593
Section
Research Article
Publication year
2018
Publication date
Jan 2018
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1990919046
Copyright
© 2018 Saitoh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.