It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Understanding transmission routes of hospital-acquired infections (HAI) is key to improve their control. In this context, describing and analyzing dynamic inter-individual contact patterns in hospitals is essential. In this study, we used wearable sensors to detect Close Proximity Interactions (CPIs) among patients and hospital staff in a 200-bed long-term care facility over 4 months. First, the dynamic CPI data was described in terms of contact frequency and duration per individual status or activity and per ward. Second, we investigated the individual factors associated with high contact frequency or duration using generalized linear mixed-effect models to account for inter-ward heterogeneity. Hospital porters and physicians had the highest daily number of distinct contacts, making them more likely to disseminate HAI among individuals. Conversely, contact duration was highest between patients, with potential implications in terms of HAI acquisition risk. Contact patterns differed among hospital wards, reflecting varying care patterns depending on reason for hospitalization, with more frequent contacts in neurologic wards and fewer, longer contacts in geriatric wards. This study is the first to report proximity-sensing data informing on inter-individual contacts in long-term care settings. Our results should help better understand HAI spread, parameterize future mathematical models, and propose efficient control strategies.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Inserm, UVSQ, Institut Pasteur, Université Paris-Saclay, Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases (B2PHI), Paris, France
2 USR 3756 IP CNRS, Institut Pasteur – Bioinformatics and Biostatistics Hub – C3BI, Paris, France; Institut Pasteur, Malaria Parasites & Hosts Unit, Department of Parasites & Insect Vectors, Paris, France (GRID:grid.428999.7) (ISNI:0000 0001 2353 6535)
3 LIP UMR CNRS 5668 Université de Lyon, ENS de Lyon, DANTE/INRIA, Lyon, France (GRID:grid.25697.3f) (ISNI:0000 0001 2172 4233)
4 Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1136, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Paris, France (GRID:grid.503257.6) (ISNI:0000 0000 9776 8518)
5 Université de Lyon, Laboratoire de l’Informatique du Parallélisme (UMR CNRS 5668- ENS de Lyon-UCB Lyon 1), IXXI Rhône Alpes Complex Systems Institute, ENS de Lyon, Lyon, France (GRID:grid.25697.3f) (ISNI:0000 0001 2172 4233)
6 Biomathematics, Pharmacoepidemiology and Infectious Diseases (B2PHI), Institut Pasteur, INSERM 1181 Biostatistics, Paris, France (GRID:grid.428999.7) (ISNI:0000 0001 2353 6535); Université de Versailles Saint-Quentin, UMR 1181, B2PHI, Montigny-Le-Bretonneux, France (GRID:grid.12832.3a) (ISNI:0000 0001 2323 0229); Raymond-Poincaré Hospital, AP-HP, Garche, France (GRID:grid.414291.b)
7 Inserm, UVSQ, Institut Pasteur, Université Paris-Saclay, Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases (B2PHI), Paris, France (GRID:grid.414291.b)
8 Conservatoire national des Arts et Métiers, Laboratoire MESuRS, Paris, France (GRID:grid.36823.3c) (ISNI:0000 0001 2185 090X); Conservatoire national des Arts et Métiers, Unité PACRI, Institut Pasteur, Paris, France (GRID:grid.36823.3c) (ISNI:0000 0001 2185 090X)
9 AP-HP, Paris, France (GRID:grid.50550.35) (ISNI:0000 0001 2175 4109)
10 Universidad de Buenos Aires, Buenos Aires, Argentina (GRID:grid.7345.5) (ISNI:0000 0001 0056 1981)
11 AbAg, Chilly-Mazarin, France (GRID:grid.50550.35)
12 Inserm, UVSQ, Institut Pasteur, Université Paris-Saclay, Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases (B2PHI), Paris, France (GRID:grid.50550.35)
13 Insa, Lyon, France (GRID:grid.15399.37) (ISNI:0000 0004 1765 5089)
14 AbAg, Chilly-Mazarin, France (GRID:grid.15399.37)
15 Université de Versailles Saint-Quentin, UMR 1181, B2PHI, Montigny-Le-Bretonneux, France (GRID:grid.12832.3a) (ISNI:0000 0001 2323 0229)
16 Inserm, Paris, France (GRID:grid.7429.8) (ISNI:0000000121866389)
17 Université Paris-Saclay, Univ Paris-Sud, UMR 0320/UMR8120 Génétique Quantitative et Evolution Le Moulon, Gif-sur-Yvette, France (GRID:grid.460789.4) (ISNI:0000 0004 4910 6535)
18 Institut Pasteur, Paris, France (GRID:grid.428999.7) (ISNI:0000 0001 2353 6535)
19 AbAg, Chilly-Mazarin, France (GRID:grid.428999.7)
20 USR 3756 IP CNRS, Institut Pasteur – Bioinformatics and Biostatistics Hub – C3BI, Paris, France (GRID:grid.50550.35)