Abstract

Understanding transmission routes of hospital-acquired infections (HAI) is key to improve their control. In this context, describing and analyzing dynamic inter-individual contact patterns in hospitals is essential. In this study, we used wearable sensors to detect Close Proximity Interactions (CPIs) among patients and hospital staff in a 200-bed long-term care facility over 4 months. First, the dynamic CPI data was described in terms of contact frequency and duration per individual status or activity and per ward. Second, we investigated the individual factors associated with high contact frequency or duration using generalized linear mixed-effect models to account for inter-ward heterogeneity. Hospital porters and physicians had the highest daily number of distinct contacts, making them more likely to disseminate HAI among individuals. Conversely, contact duration was highest between patients, with potential implications in terms of HAI acquisition risk. Contact patterns differed among hospital wards, reflecting varying care patterns depending on reason for hospitalization, with more frequent contacts in neurologic wards and fewer, longer contacts in geriatric wards. This study is the first to report proximity-sensing data informing on inter-individual contacts in long-term care settings. Our results should help better understand HAI spread, parameterize future mathematical models, and propose efficient control strategies.

Details

Title
Measuring dynamic social contacts in a rehabilitation hospital: effect of wards, patient and staff characteristics
Author
Duval, Audrey 1 ; Obadia, Thomas 2 ; Martinet Lucie 3 ; Pierre-Yves, Boëlle 4   VIAFID ORCID Logo  ; Fleury, Eric 5 ; Guillemot Didier 6 ; Lulla, Opatowski 7 ; Temime Laura 8 ; Alvarez, Anne Sophie 9 ; Baraffe Audrey 9 ; Beiró Mariano 10 ; Bertucci Inga 9 ; Cyncynatus Camille 11 ; Dannet Florence 9 ; Delaby Marie Laure 9 ; Denys, Pierre 9 ; de Cellès Matthieu Domenech 12 ; Fraboulet Antoine 13 ; Gaillard Jean-Louis 14 ; Herrmann, Jean-Louis 15 ; Labrador, Boris 9 ; Lasley, Jennifer 16 ; Lawrence, Christine 9 ; Legrand, Judith 17 ; Le Minor Odile 18 ; Ligier Caroline 18 ; Mignon Karine 19 ; Sacleux Catherine 9 ; Salomon Jérôme 6 ; Perard Marie 9 ; Petit Laure 20 ; Remy Laeticia 9 ; Thiebaut, Anne 12 ; Thomas, Damien 11 ; Tronchet Philippe 9 ; Villain Isabelle 9 

 Inserm, UVSQ, Institut Pasteur, Université Paris-Saclay, Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases (B2PHI), Paris, France 
 USR 3756 IP CNRS, Institut Pasteur – Bioinformatics and Biostatistics Hub – C3BI, Paris, France; Institut Pasteur, Malaria Parasites & Hosts Unit, Department of Parasites & Insect Vectors, Paris, France (GRID:grid.428999.7) (ISNI:0000 0001 2353 6535) 
 LIP UMR CNRS 5668 Université de Lyon, ENS de Lyon, DANTE/INRIA, Lyon, France (GRID:grid.25697.3f) (ISNI:0000 0001 2172 4233) 
 Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1136, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Paris, France (GRID:grid.503257.6) (ISNI:0000 0000 9776 8518) 
 Université de Lyon, Laboratoire de l’Informatique du Parallélisme (UMR CNRS 5668- ENS de Lyon-UCB Lyon 1), IXXI Rhône Alpes Complex Systems Institute, ENS de Lyon, Lyon, France (GRID:grid.25697.3f) (ISNI:0000 0001 2172 4233) 
 Biomathematics, Pharmacoepidemiology and Infectious Diseases (B2PHI), Institut Pasteur, INSERM 1181 Biostatistics, Paris, France (GRID:grid.428999.7) (ISNI:0000 0001 2353 6535); Université de Versailles Saint-Quentin, UMR 1181, B2PHI, Montigny-Le-Bretonneux, France (GRID:grid.12832.3a) (ISNI:0000 0001 2323 0229); Raymond-Poincaré Hospital, AP-HP, Garche, France (GRID:grid.414291.b) 
 Inserm, UVSQ, Institut Pasteur, Université Paris-Saclay, Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases (B2PHI), Paris, France (GRID:grid.414291.b) 
 Conservatoire national des Arts et Métiers, Laboratoire MESuRS, Paris, France (GRID:grid.36823.3c) (ISNI:0000 0001 2185 090X); Conservatoire national des Arts et Métiers, Unité PACRI, Institut Pasteur, Paris, France (GRID:grid.36823.3c) (ISNI:0000 0001 2185 090X) 
 AP-HP, Paris, France (GRID:grid.50550.35) (ISNI:0000 0001 2175 4109) 
10  Universidad de Buenos Aires, Buenos Aires, Argentina (GRID:grid.7345.5) (ISNI:0000 0001 0056 1981) 
11  AbAg, Chilly-Mazarin, France (GRID:grid.50550.35) 
12  Inserm, UVSQ, Institut Pasteur, Université Paris-Saclay, Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases (B2PHI), Paris, France (GRID:grid.50550.35) 
13  Insa, Lyon, France (GRID:grid.15399.37) (ISNI:0000 0004 1765 5089) 
14  AbAg, Chilly-Mazarin, France (GRID:grid.15399.37) 
15  Université de Versailles Saint-Quentin, UMR 1181, B2PHI, Montigny-Le-Bretonneux, France (GRID:grid.12832.3a) (ISNI:0000 0001 2323 0229) 
16  Inserm, Paris, France (GRID:grid.7429.8) (ISNI:0000000121866389) 
17  Université Paris-Saclay, Univ Paris-Sud, UMR 0320/UMR8120 Génétique Quantitative et Evolution Le Moulon, Gif-sur-Yvette, France (GRID:grid.460789.4) (ISNI:0000 0004 4910 6535) 
18  Institut Pasteur, Paris, France (GRID:grid.428999.7) (ISNI:0000 0001 2353 6535) 
19  AbAg, Chilly-Mazarin, France (GRID:grid.428999.7) 
20  USR 3756 IP CNRS, Institut Pasteur – Bioinformatics and Biostatistics Hub – C3BI, Paris, France (GRID:grid.50550.35) 
Publication year
2018
Publication date
Jan 2018
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1991616604
Copyright
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.