Abstract

More and more natural DNA variants are being linked to physiological traits. Yet, understanding what differences they make on molecular regulations remains challenging. Important properties of gene regulatory networks can be captured by computational models. If model parameters can be “personalized” according to the genotype, their variation may then reveal how DNA variants operate in the network. Here, we combined experiments and computations to visualize natural alleles of the yeast GAL3 gene in a space of model parameters describing the galactose response network. Alleles altering the activation of Gal3p by galactose were discriminated from those affecting its activity (production/degradation or efficiency of the activated protein). The approach allowed us to correctly predict that a non‐synonymous SNP would change the binding affinity of Gal3p with the Gal80p transcriptional repressor. Our results illustrate how personalizing gene regulatory models can be used for the mechanistic interpretation of genetic variants.

Details

Title
Assigning function to natural allelic variation via dynamic modeling of gene network induction
Author
Richard, Magali 1   VIAFID ORCID Logo  ; Chuffart, Florent 2 ; Hélène Duplus‐Bottin 2 ; Pouyet, Fanny 2 ; Spichty, Martin 2 ; Fulcrand, Etienne 2 ; Entrevan, Marianne 2 ; Barthelaix, Audrey 2 ; Springer, Michael 3 ; Jost, Daniel 4   VIAFID ORCID Logo  ; Yvert, Gaël 2   VIAFID ORCID Logo 

 Laboratoire de Biologie et de Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, Université de Lyon, Lyon, France; Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC‐IMAG, Grenoble, France 
 Laboratoire de Biologie et de Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, Université de Lyon, Lyon, France 
 Department of Systems Biology, Harvard Medical School, Boston, MA, USA 
 Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC‐IMAG, Grenoble, France 
Section
Articles
Publication year
2018
Publication date
Jan 2018
Publisher
EMBO Press
e-ISSN
17444292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1991930036
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.