Abstract

Materials science has made progress in maximizing or minimizing the thermal conductivity of materials; however, the thermal effusivity—related to the product of conductivity and capacity—has received limited attention, despite its importance in the coupling of thermal energy to the environment. Herein, we design materials that maximize the thermal effusivity by impregnating copper and nickel foams with conformal, chemical-vapor-deposited graphene and octadecane as a phase change material. These materials are ideal for ambient energy harvesting in the form of what we call thermal resonators to generate persistent electrical power from thermal fluctuations over large ranges of frequencies. Theory and experiment demonstrate that the harvestable power for these devices is proportional to the thermal effusivity of the dominant thermal mass. To illustrate, we measure persistent energy harvesting from diurnal frequencies, extracting as high as 350 mV and 1.3 mW from approximately 10 °C diurnal temperature differences.

Details

Title
Ultra-high thermal effusivity materials for resonant ambient thermal energy harvesting
Author
Cottrill, Anton L 1 ; Liu, Albert Tianxiang 1 ; Kunai, Yuichiro 1 ; Koman, Volodymyr B 1 ; Kaplan, Amir 1 ; Mahajan, Sayalee G 1 ; Liu, Pingwei 1 ; Toland, Aubrey R 1 ; Strano, Michael S 1 

 Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 
Pages
1-11
Publication year
2018
Publication date
Feb 2018
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2002201481
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.