Abstract
A radial basis function method for solving time-fractional KdV equation is presented. The Caputo derivative is approximated by the high order formulas introduced in Buhman (Proc. Edinb. Math. Soc. 36:319–333, 1993). By choosing the centers of radial basis functions as collocation points, in each time step a nonlinear system of algebraic equations is obtained. A fixed point predictor–corrector method for solving the system is introduced. The efficiency and accuracy of our method are demonstrated through several illustrative examples. By the examples, the experimental convergence order is approximately \[4-\alpha \], where \[\alpha \] is the order of time derivative.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Mathematics, Faculty of Science, Arak University, Arak, Iran





