It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Insertion of halogens such as bromine or iodine affects the electronic polarizability of ions and the local field inside the medium, and thus modifies the refractive index. Acquiring precise knowledge of the dispersion of refractive index and ultimately tailoring conventional semiconductors for wide-range refractive index control have been a vital issue to resolve before realizing advanced organic optoelectronic devices. In this report, dispersions of the refractive index of a single crystal tetramethyltetraselenafulvalene [C10H12Se4] (TMTSF) are thoroughly studied from broadband interference modulations of photoluminescence (PL) spectra at various temperatures and doping levels. A large enhancement of the refractive index, more than 20% of the intrinsic value, is achieved with inclusion of a small composition of iodide ions, while the structural and optical properties remain mostly intact. Nearly temperature independent dispersion of the refractive index suggests that, unlike most polymers in which the thermal expansion coefficient dominates over the change of polarizability with temperature, the latter enhances significantly and may become more or less comparable to the thermal expansion coefficient given by 1.71 × 10−4/K, when single crystal TMTSF is doped by iodine.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer