It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Sequential chemical extraction and synchrotron-based XANES spectroscopy techniques were used to identify P species in two ashes before and after addition to a prairie soil. The used ashes were: meat and bone meal ash (MBMA) and dried distillers grains ash (DDGA) plus mineral P fertilizer (MP) for comparison. Soil treated with MP contained higher content of resin-Pi and NaHCO3-Pi followed by DDGA and MBMA. The MBMA amended soil had the highest (47%) proportion of the soil P contained in recalcitrant HCl extractable fraction, reflecting more Ca-bound P present and being formed in soil after application. Analysis of both ashes with XANES spectroscopy before application to soil revealed that MBMA had strong spectral features consistent with hydroxyapatite (Ca5(PO4)3(OH)). DDGA exhibited spectral features consistent with a mixture of several Mg and K phosphate salts rather than a single mineral species. The distinctive features in the XANES spectra of both ashes largely disappeared after amendment to the soil, suggesting transformation to different P forms in the soil after application. It is also possible that the added amount of P to the studied soil via DDGS or MBMA was small enough so that P speciation is not different from the background P level.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Soil Science, King Saud University, Riyadh, Saudi Arabia; Department of Soil Science, University of Saskatchewan, Saskatoon, Sk, Canada
2 Department of Soil Science, University of Saskatchewan, Saskatoon, Sk, Canada
3 Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Sk, Canada