It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We propose an empirical framework to scale the effects of bioturbation on sediment resuspension to population bioturbation activity, approximated as population metabolic rate. Individual metabolic rates have been estimated as functions of body size and extrapolated to population level. We used experimental flumes to test this approach across different types of marine, soft-sediment bioturbators. We observed that a large part of the variance in biota-mediated sediment resuspension can be explained by a positive relationship with population metabolic rate. Other mechanisms can strongly influence the outcome, such as bioturbation of deep sediment strata, biotic interactions with hydrodynamic stress and overlapping areas of influence must be further investigated. By relating the biota-mediated changes in resuspended sediment to metabolism, we can place our observations within the broader context of the metabolic theory of ecology and to formulate general expectations about changes in biota-mediated sediment resuspension in response to changes in population structure and climate change.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Department of Estuarine and Delta Systems, Royal Netherlands Institute of Sea Research (NIOZ) and Utrecht University, Yerseke, The Netherlands; Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Centro Ecotekne Pal. B S.P. 6, Lecce, Monteroni, Lecce, Italy
2 Department of Estuarine and Delta Systems, Royal Netherlands Institute of Sea Research (NIOZ) and Utrecht University, Yerseke, The Netherlands
3 Department of Estuarine and Delta Systems, Royal Netherlands Institute of Sea Research (NIOZ) and Utrecht University, Yerseke, The Netherlands; Institute for Marine Resources and Ecosystem Studies (IMARES), Wageningen University, Wageningen, The Netherlands