Content area
Full Text
Received Sep 4, 2017; Accepted Nov 30, 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
Oxidative stress is caused by the insufficient capacity of biological systems to neutralize the excessive production of reactive species [1], which leads to oxidative damage in cells. Neuronal cells are particularly susceptible to reactive oxygen species (ROS) and reactive nitrogen species (RNS) due to their high metabolic activity, low antioxidant capacity, and their nonreplicative nature. Furthermore, the abundance of mitochondria in brain cells increases the generation of reactive species [2].
Fruits and vegetables have many bioactive compounds such as polyphenols, which have antioxidant properties with a role in the protection of cellular macromolecules against oxidative damage induced by ROS and RNS [3–5]. There is increasing evidence that polyphenols may protect cell constituents against oxidative damage and, therefore, limit the risk of various degenerative diseases associated with oxidative stress [6]. Studies have repeatedly shown an inverse association between the risk of several chronic human diseases and the consumption of polyphenol-rich diet [7]. The phenolic group of polyphenols can accept an electron to form relatively stable phenoxyl radicals, thereby disrupting chain oxidative reactions in cellular components. It is well established that polyphenol-rich foods and beverages may increase plasma antioxidant capacity [8, 9].
Grapes contain high levels of polyphenols, which have been demonstrated to reduce oxidative stress, inflammatory response, and the oxidation of low density lipoprotein cholesterol (LDL-c), while inhibiting platelet aggregation and improving protection against atherothrombotic episodes. Such actions promote beneficial effects on coronary heart disease (CHD) and atherosclerosis [10–12]. Red wines are rich in polyphenols, such as phenolic acids (gallic acid, caffeic acid, p-coumaric acid, and others), stilbenes (trans-resveratrol), and flavonoids (catechin, epicatechin, quercetin, rutin, myricetin, and others) [13]. Therefore, a regular consumption of red wine has been linked with the “French paradox,” which explains the apparent compatibility of a high-fat diet with a low mortality from CHD. Also, current evidence suggests that wine consumption is correlated with a reduction in the incidence of neurodegenerative diseases associated to oxidative stress such as Alzheimer’s and Parkinson’s disease [14]. Grape juice is a natural and...