It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This study applied the Open Source Energy Modelling System (OSeMOSYS), an optimisation model for long term energy planning, which is integrated in Long-range Energy Alternatives Planning (LEAP) to develop optimal generation pathways and dispatch scheduling of selected generating technologies for power generation in Ghana. Simulating conventional and non-conventional energy technologies, the study examines the technological, economic and environmental implications of renewable energy policies from 2010 to 2040. Sensitivity analyses were undertaken to determine the effect of varied development in non-conventional renewable energy technologies investment cost as well as fuel prices. The findings suggest that, with a comprehensive implementation of energy efficiency and other strategies, renewable energy technologies can contribute more than 70% of the generation requirement in Ghana by 2040. This will result in significant economic and environmental benefits as well as sustainability of the energy sector.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Computer and Electronic Engineering, Brunel University London, Uxbridge UB8 3PH, UK
2 Department of Automotive and Electrical Engineering, University of Education Winneba, P.O. Box 1277, Kumasi, Ghana