It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Influenza’s propensity for antigenic drift and shift, and to elicit predominantly strain specific antibodies (Abs) leaves humanity susceptible to waves of new strains with pandemic potential for which limited or no immunity may exist. Subsequently new clinical interventions are needed. To identify hemagglutinin (HA) epitopes that if targeted may confer universally protective humoral immunity, we examined plasmablasts from a subject that was immunized with the seasonal influenza inactivated vaccine, and isolated a human monoclonal Ab (mAb), KPF1. KPF1 has broad and potent neutralizing activity against H1 influenza viruses, and recognized 83% of all H1 isolates tested, including the pandemic 1918 H1. Prophylactically, KPF1 treatment resulted in 100% survival of mice from lethal challenge with multiple H1 influenza strains and when given as late as 72 h after challenge with A/California/04/2009 H1N1, resulted in 80% survival. KPF1 recognizes a novel epitope in the HA globular head, which includes a highly conserved amino acid, between the Ca and Cb antigenic sites. Although recent HA stalk-specific mAbs have broader reactivity, their potency is substantially limited, suggesting that cocktails of broadly reactive and highly potent HA globular head-specific mAbs, like KPF1, may have greater clinical feasibility for the treatment of influenza infections.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Microbiology & Immunology, University of Rochester, Rochester, NY, USA
2 Infectious Diseases Division, University of Rochester, Rochester, NY, USA
3 Division of Nephrology, University of Rochester, Rochester, NY, USA
4 Department of Microbiology, Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA