It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Biological cells express intracellular biomolecular information to the extracellular environment as various physical responses. We show a novel computational approach to estimate intracellular biomolecular pathways from growth cone electrophysiological responses. Previously, it was shown that cGMP signaling regulates membrane potential (MP) shifts that control the growth cone turning direction during neuronal development. We present here an integrated deterministic mathematical model and Bayesian reversed-engineering framework that enables estimation of the molecular signaling pathway from electrical recordings and considers both the system uncertainty and cell-to-cell variability. Our computational method selects the most plausible molecular pathway from multiple candidates while satisfying model simplicity and considering all possible parameter ranges. The model quantitatively reproduces MP shifts depending on cGMP levels and MP variability potential in different experimental conditions. Lastly, our model predicts that chloride channel inhibition by cGMP-dependent protein kinase (PKG) is essential in the core system for regulation of the MP shifts.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan
2 Department of Biochemistry, New York University School of Medicine, New York, USA
3 Graduate School of Informatics, Kyoto University, Kyoto, Japan
4 Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
5 Department of Biochemistry, New York University School of Medicine, New York, USA; KASAH Technology, Inc, New York, USA
6 Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan; School of Information Science and Technology, Aichi Prefectural University, Aichi, Japan