It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Pancreatic beta-cells are selectively destroyed by the host immune system in type 1 diabetes. Thus, drugs that preserve beta-cell mass and/or function have the potential to prevent or slow the progression of this disease. We recently reported that the use-dependent sodium channel blocker, carbamazepine, protects beta-cells from inflammatory cytokines in vitro. Here, we tested the effects of carbamazepine treatment in female non-obese diabetic (NOD) mice by supplementing LabDiet 5053 with 0.5% w/w carbamazepine to achieve serum carbamazepine levels of 14.98 ± 3.19 µM. Remarkably, diabetes incidence over 25 weeks, as determined by fasting blood glucose, was ~50% lower in carbamazepine treated animals. Partial protection from diabetes in carbamazepine-fed NOD mice was also associated with improved glucose tolerance at 6 weeks of age, prior to the onset of diabetes in our colony. Less insulitis was detected in carbamazepine treated NOD mice at 6 weeks of age, but we did not observe differences in CD4+ and CD8+ T cell composition in the pancreatic lymph node, as well as circulating markers of inflammation. Taken together, our results demonstrate that carbamazepine reduces the development of type 1 diabetes in NOD mice by maintaining functional beta-cell mass.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Diabetes Research Group, UBC Life Sciences Institute, Department of Cellular and Physiological Sciences, Vancouver, BC, Canada
2 Department of Microbiology and Immunology, UBC Life Sciences Institute, Vancouver, BC, Canada