Abstract

Electrocatalytic core-shell nanoparticles, such as nickel/iron oxides for the oxygen evolution reaction (OER) in alkaline electrolytes, require rapid synthesis and measurement for practical use. To meet this challenge, we investigated a novel process of adding Ni(II) species to Fe nanoparticles immediately after synthesis, which we expected to yield Ni-rich shells around Fe-rich cores. Cyclic voltammetry showed that the overpotential decreased as the molar ratio of Ni to Fe in the synthesis vessel increased from 0.2 mol Ni:1 mol Fe to 1.5 mol Ni:1 mol Fe, consistent with an increase of Ni composition. Unexpectedly, the overpotential increased abruptly at 2.0 mol Ni:1 mol Fe. X-ray photoelectron spectroscopy revealed that this synthesis ratio resulted in less Ni at the nanoparticle surfaces than lower synthesis ratios. These results demonstrate the sensitivity of rapid electrochemical measurements to surface composition, and the limits of Ni(II) adsorption and reduction to rapidly form Ni-rich shells around Fe-rich cores. Cyclic voltammetry also showed that the onset of the methanol oxidation reaction (MOR) correlates with the oxidation of Ni(OH)2 to NiOOH. Therefore, tuning materials to improve performance as OER catalysts also improves their performance as MOR catalysts.

Details

Title
Rapid Synthesis and Correlative Measurements of Electrocatalytic Nickel/Iron Oxide Nanoparticles
Author
Jeerage, Kavita M 1 ; Candelaria, Stephanie L 1 ; Stavis, Samuel M 2 

 Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado, United States 
 Center for Nanoscale Science and Technology, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland, United States 
Pages
1-10
Publication year
2018
Publication date
Mar 2018
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2014356110
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.