Abstract

Featured Application

control strategy of motor drive system for electric vehicles

Abstract

A drive system with an open-end winding permanent magnet synchronous motor (OW-PMSM) fed by a dual inverter and powered by two independent power sources is suitable for electric vehicles. By using an energy conversion device as primary power source and an energy storage element as secondary power source, this configuration can not only lower the DC-bus voltage and extend the driving range, but also handle the power sharing between two power sources without a DC/DC (direct current to direct current) converter. Based on a drive system model with voltage vector distribution, this paper proposes a desired power sharing calculation method and three different voltage vector distribution methods. By their selection strategy the optimal voltage vector distribution method can be selected according to the operating conditions. On the basis of the integral synthesizing of the desired voltage vector, the proposed voltage vector distribution method can reduce the inverter switching frequency while making the primary power source follow its desired output power. Simulation results confirm the validity of the proposed methods, which improve the primary power source’s energy efficiency by regulating its output power and lessen inverter switching loss by reducing the switching frequency. This system also provides an approach to the energy management function of electric vehicles.

Details

Title
Power Sharing and Voltage Vector Distribution Model of a Dual Inverter Open-End Winding Motor Drive System for Electric Vehicles
Author
Yi-Fan, Jia  VIAFID ORCID Logo  ; Chu, Liang; Yu-Kuan, Li; Zhao, Di  VIAFID ORCID Logo  ; Tang, Xin
First page
254
Publication year
2018
Publication date
2018
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2014768812
Copyright
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.