It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Variable expression of visual pigment proteins (opsins) in cone photoreceptors of the vertebrate retina is a primary determinant of vision plasticity. Switches in opsin expression or variable co-expression of opsins within differentiated cones have been documented for a few rodents and fishes, but the extent of photoreceptor types affected and potential functional significance are largely unknown. Here, we show that both single and double cones in the retina of a flatfish, the starry flounder (Platichthys stellatus), undergo visual pigment changes through opsin switches or variable opsin co-expression. As the post-metamorphic juvenile (i.e., the young asymmetric flatfish with both eyes on one side of the body) grows from ~5 g to ~196 g, some single cones and one member of unequal double cones switched from a visual pigment with maximum wavelength of absorbance, λmax, at shorter wavelengths (437 nm and 527 nm) to one with longer λmax (456 nm and 545 nm, respectively) whereas other cones had intermediate visual pigments (λmax at 445 nm or 536 nm) suggesting co-expression of two opsins. The shift toward longer wavelength absorbing visual pigments was in line with maximizing sensitivity to the restricted light spectrum at greater depths and achromatic detection of overhead targets.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
2 Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Biology, University of Victoria, Victoria, British Columbia, Canada
3 Department of Biology, University of Hawai’i at Mãnoa, Honolulu, Hawai’i, USA
4 Department of Biology, University of Victoria, Victoria, British Columbia, Canada