It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Estimation for weather-related failure probability of overhead transmission lines is essential in the reliability assessment of a power system. This paper analyzes the outage and weather data of 110 kV overhead transmission lines in the Guangxi Zhuang Autonomous Region of China during 2011–2014. The result reveals obvious uneven distributions of outage events for time and space due to the spatial and temporal variation of severe weather. Based on the results, an estimation method is proposed in this paper. Split and aggregation is used to smooth the outage and weather data. The poisson model is adopted in our method to investigate the statistic characteristics of transmission line outage events. Regression analysis is applied to obtain the correlation between the weather intensity and history failure rate. Furthermore the method proposed is validated against the empirical outage data.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Electrical Engineering, Wuhan University, Wuhan, China
2 Electric Power Research Institute, Guangxi Power Grid Co., Ltd, Nanning, China
3 Hubei Electric Engineering Corporation, Wuhan, China