It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Direct hydrogenation of CO2 to CO, the reverse water–gas shift reaction, is an attractive route to CO2 utilization. However, the use of molecular catalysts is impeded by the general reactivity of metal hydrides with CO2. Insertion into M–H bonds results in formates (MO(O)CH), whereas the abnormal insertion to the hydroxycarbonyl isomer (MC(O)OH), which is the key intermediate for CO-selective catalysis, has never been directly observed. We here report that the selectivity of CO2 insertion into a Ni–H bond can be inverted from normal to abnormal insertion upon switching from thermal to photochemical conditions. Mechanistic examination for abnormal insertion indicates photochemical N–H reductive elimination as the pivotal step that leads to an umpolung of the hydride ligand. This study conceptually introduces metal-ligand cooperation for selectivity control in photochemical transformations.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Universität Göttingen, Institut für Anorganische Chemie, Göttingen, Germany
2 Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany