It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We report a multi adsorbent-based method using combinations of metal-organic frameworks (MOFs) and a commercial sorbent Tenax-TA for sampling and thermal desorption (TD) gas chromatography-mass spectrometry (GC-MS) quantification of mixtures of six (C1 to C5) aldehydes. The feasibility of this approach was demonstrated along with the optical analytical conditions for maximum recovery. Optimal TD conditions for adsorption and desorption of aldehydes using MOF-5 (Zn-based MOF)+ Tenax-TA were determined as −25 °C and 150 °C, respectively (purge volume: 100 ml). These conditions yielded good linearity (R2 = 0.997), precision, and high sensitivity. Analysis of the aldehyde mixtures yielded slightly smaller R2 values than the analysis of single species. Additionally, the performance of MOF-5+ Tenax-TA was compared with other combinations comprising of Cu-based MOF-199 and Zr-based MOF of UiO-66 topology. The results of the theoretical modelling analyses propose simultaneous interaction of the C=O group of aldehydes with open metal sites of the studied MOFs and van der Waals interaction of hydrocarbon “tail” of aldehydes with linkers of MOFs. The combined interactions significantly increased the enthalpy (eV/molecule) of formaldehyde adsorption on MOF. Our findings unravel a potential way to extend the application of GC-based detection toward concurrent analysis of organic molecules of variable sizes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, Korea
2 Department of Chemical, Medical and Environmental Science, National Physical Laboratory, Teddington, UK
3 Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup, Republic of Korea
4 Department of Chemistry, Hanyang University, 222 Wangsimni-Ro, Seoul, Korea