Full Text

Turn on search term navigation

© 2018 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

We have reported that WNT10A plays a critical role in the growth of fibroblasts/myofibroblasts and microvascular endothelial cells, i.e.; wound healing/scarring. To ascertain the in vivo regulatory, central functions of WNT10A, we examined the net effects of WNT10A depletion using WNT10A-deficient mice (WNT10A–/–).

Methods and results

We generated WNT10A–/–mice, displaying a range of unique phenotypes of morpho/organogenetic failure, such as growth retardation, alopecia, kyphosis and infertility, and then focused on the functions of WNT10A in wound healing. We subjected C57BL/6J wild-type (WT) or WNT10A–/–mice to skin ulcer formation. The WNT10A–/–mice had significantly larger injured areas and delayed wound healing, which were associated with (a) a smaller number of fibroblasts/myofibroblasts and microvessels; and (b) more reduced expression and synthesis of collagen, compared with WT mice with intact WNT10A expression, especially in those with activated myofibroblasts.

Conclusions

These observations indicate that WNT10A signaling can play a pivotal in vivo role in wound healing by regulating the expression and synthesis of collagen, as one of fibrogenic factors, at least in part, and critical in vivo roles of WNT10A-mediated effective wound healing are extremely closely associated with collagen expression.

Details

Title
Critical in vivo roles of WNT10A in wound healing by regulating collagen expression/synthesis in WNT10A-deficient mice
Author
Ke-Yong, Wang; Yamada, Sohsuke; Izumi, Hiroto; Tsukamoto, Manabu; Nakashima, Tamiji; Tasaki, Takashi; Guo, Xin; Uramoto, Hidetaka; Sasaguri, Yasuyuki; Kohno, Kimitoshi
First page
e0195156
Section
Research Article
Publication year
2018
Publication date
Mar 2018
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2019803127
Copyright
© 2018 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.