Content area
Full text
Received Nov 21, 2017; Accepted Feb 14, 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
Organ shortage is the main challenge in liver transplantation (LT) and the discrepancy between the number of waiting list patients and potential donor offers is greater in the paediatric field due to the scarcity of size-matched donors/grafts. The paediatric waiting list mortality rate nowadays is about 10%; however mortality appears to be highest in children younger than 6 years [1, 2]. Furthermore, in recent years a change in donor demographics has resulted in a reduction in the number of brain-dead donor livers suitable for splitting, which represent the major graft pool for children awaiting LT [2]. Consequently, alternative organ sources have been explored in order to increase organ availability for paediatric recipients by optimization of donor support, graft preservation, and surgical techniques.
In the last few decades, there has been a great interest in donation after circulatory death (DCD), the use of which has rapidly increased [3]. DCD donors are generally considered “extended-criteria donors.” In countries with an active DCD program, DCD donors account for 5% to 35% of the total donation [4, 5]. Hence, the use of DCD has significantly augmented the donor pool for LT [6]. Several studies have reported that patient survival after adult DCD LT is equivalent to that of donation after brain death (DBD), while graft survival is slightly inferior [7, 8]. Historically, the use of DCD grafts has been associated with higher risks of primary nonfunction (PNF), but the current incidence of PNF appears to be similar to that of DBD grafts due to better understanding and graft selection; but the problems surrounding DCD grafts such as ischaemic cholangiopathy, vascular thrombosis, and posttransplant acute kidney injury remain unsolved [9, 10]. Improved results with DCD have been obtained by avoiding high-risk factors related to the donor such as advanced donor age, overweight donor, prolonged cold ischemic time (CIT) and warm ischemic time (WIT), and recipient variables including retransplantation, need of intensive care at time of transplant, or renal dysfunction [11, 12]. Moreover, recent advances in improving graft quality, using donor...