Full Text

Turn on search term navigation

© 2018 Lim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Objective

This study evaluated the possibility of accelerated gadolinium accumulation in irradiated brain parenchyma where the blood-brain barrier was weakened.

Methods

From January 2010 to June 2015, 44 patients with supratentorial glioblastoma were retrospectively identified who underwent pre- and post-radiation brain MR imaging, including R1 mapping. The mean dose of administered gadobutrol (Gadovist, Bayer, Germany) was 5.1 vials. Regions of interest (ROIs) were drawn around tumors that were located within 50–100% iso-dose lines of maximum radiation dose. ROIs were also drawn at globus pallidus, thalamus, and cerebral white matter. Averages of R1 values (unit: s-1) before and after radiation and those of R1 ratio (post-radiation R1 / pre-radiation R1) were compared by t-test or rank sum test as appropriate. Multiple linear regression analysis was performed to evaluate independent association factors for R1 value increase at irradiated parenchyma.

Results

The mean R1 values in peri-tumoral areas were significantly increased after radiotherapy (0.7901±0.0977 [mean±SD] vs. 0.8146±0.1064; P <.01). The mean R1 ratio of high radiation dose areas was significantly higher than that of low dose areas (1.0055±0.0654 vs. 0.9882±0.0642; P <.01). The mean R1 ratio was lower in those who underwent hypofractionated radiotherapy (mean dose, 45.0 Gy) than those who underwent routine radiotherapy (mean dose, 61.1 Gy) (0.9913±0.0740 vs. 1.0463±0.0633; P = .08). Multiple linear regression analysis revealed that only radiotherapy type was significantly associated with increased R1 (P = .02) around tumors.

Conclusions

Radiotherapy can induce R1 value increase in the brain parenchyma, which might suggest accelerated gadolinium accumulation due to damage to the blood-brain barrier.

Details

Title
Does radiation therapy increase gadolinium accumulation in the brain?: Quantitative analysis of T1 shortening using R1 relaxometry in glioblastoma multiforme patients
Author
Lim, Woo Hyeon; Seung Hong Choi; Yoo, Roh-Eul; Kang, Koung Mi; Tae Jin Yun; Ji-Hoon, Kim; Chul-Ho Sohn
First page
e0192838
Section
Research Article
Publication year
2018
Publication date
Feb 2018
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2021373006
Copyright
© 2018 Lim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.