It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Magneto-optical Kerr effect (MOKE) is an efficient approach to probe surface magnetization in thin film samples. Here we present a wide-field MOKE technique that adopts a Köhler illumination scheme to characterize the current-induced damping-like spin-orbit torque (DL-SOT) in micron-sized and unpatterned magnetic heterostructures with perpendicular magnetic anisotropy. Through a current-induced hysteresis loop shift analysis, we quantify the DL-SOT efficiency of a Ta-based heterostructure with bar-shaped geometry, Hall-cross geometry, and unpatterned geometry to be |ξDL| ≈ 0.08. The proposed wide-field MOKE approach therefore provides an instant and direct characterization of DL-SOT, without the need of any further interpretation on electrical signals.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan
2 Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan; Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan




