Content area
Full Text
Received Nov 23, 2017; Revised Feb 4, 2018; Accepted Feb 21, 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
Colorectal cancer (CRC) is the third leading cause of death from cancer worldwide, accounting for approximately 135,430 new cases and 50,260 deaths in the United States in 2017 [1]. The interactions of the colon epithelium microbiome are considered to be important for the formation of colon cancer, and Enterococcus faecalis is thought to play an important role in the pathogenesis of CRC [2].
Anesthesia and related drugs can directly or indirectly affect the immune system of patients during the perioperative period and thus affect treatment and prognosis of CRC patients as surgery is currently the most effective treatment for CRC. The 2009 European Society of Anesthesiology (ESA) presented the new concept of “anticancer anesthesia technology” with the intention of identifying the most suitable anesthesia for patients with cancer. Exploring the effects of various anesthetic methods and their related drugs on the immune system of CDC patients continues to be of great significance.
2. Colorectal Cancer and Its Immunological Bases
Tumor generation requires the provision of nutrition in the surrounding microenvironment. Tumors grow and invade and infiltrate surrounding tissues and organs. The tumor microenvironment includes a large number of cells, including immune cells, endothelial cells, and interstitial cells, all of which are involved in the occurrence and development of tumors. Studies have shown that the immunological infiltration of CRC may be clinically related to those cells.
Immune response in the process of tumor development is not just a single factor, but it plays a multifaceted role affecting tumor initiation, growth, progression, and other processes. The immune system regulates and promotes cancer programs, a process known as “immunoediting.” There are three phases to this process: elimination, balance, and escape [3].
Although experimental evidence shows that inflammation can also promote the occurrence and development of tumors [2], the immune inflammatory response in colon carcinogenesis requires further study and is still under debate [4]. Some clinical data show that the immune response inhibits the tumor. However, other investigators have concluded that the opposite is true.