Full Text

Turn on search term navigation

© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

There is a growing interest in monitoring muscle oxygen saturation (SmO2), which is a localized measure of muscle oxidative metabolism and can be acquired continuously and noninvasively using near‐infrared spectroscopy (NIRS) methods. Most NIRS systems are cumbersome, expensive, fiber coupled devices, with use limited to lab settings. A novel, low cost, wireless, wearable has been developed for use in athletic training. In this study, we evaluate the advantages and limitations of this new simple continuous‐wave (CW) NIRS device with respect to a benchtop, frequency‐domain near‐infrared spectroscopy (FDNIRS) system. Oxygen saturation and hemoglobin/myoglobin concentration in the exercising muscles of 17 athletic individuals were measured simultaneously with the two systems, while subjects performed an incremental test on a stationary cycle ergometer. In addition, blood lactate concentration was measured at the end of each increment with a lactate analyzer. During exercise, the correlation coefficients of the SmO2 and hemoglobin/myoglobin concentrations between the two systems were over 0.70. We also found both systems were insensitive to the presence of thin layers of varying absorption, mimicking different skin colors. Neither system was able to predict the athletes’ lactate threshold power accurately by simply using SmO2 thresholds. Instead, the proprietary software of the wearable device was able to predict the athletes’ lactate threshold power within half of one power increment of the cycling test. These results indicate this novel wearable device may provide a physiological indicator of athlete's exertion.

Details

Title
Validation of a novel wearable, wireless technology to estimate oxygen levels and lactate threshold power in the exercising muscle
Author
Farzam, Parisa 1 ; Starkweather, Zack 1 ; Franceschini, Maria A 1 

 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 
Section
Original Research
Publication year
2018
Publication date
Apr 2018
Publisher
John Wiley & Sons, Inc.
e-ISSN
2051817X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2025523582
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.